The shiny application can be found under the link https://gregormatheis.shinyapps.io/Data-products-week-4-shiny/
It's hosted on Shiny.IO
This document is going to show you:
- Data source
- Used packages
- Example plot and list of inputs
March 11, 2018
The shiny application can be found under the link https://gregormatheis.shinyapps.io/Data-products-week-4-shiny/
It's hosted on Shiny.IO
This document is going to show you:
datasets::swiss
## Fertility Agriculture Examination Education Catholic ## Courtelary 80.2 17.0 15 12 9.96 ## Delemont 83.1 45.1 6 9 84.84 ## Franches-Mnt 92.5 39.7 5 5 93.40 ## Moutier 85.8 36.5 12 7 33.77 ## Neuveville 76.9 43.5 17 15 5.16 ## Porrentruy 76.1 35.3 9 7 90.57 ## Broye 83.8 70.2 16 7 92.85 ## Glane 92.4 67.8 14 8 97.16 ## Gruyere 82.4 53.3 12 7 97.67 ## Sarine 82.9 45.2 16 13 91.38 ## Veveyse 87.1 64.5 14 6 98.61 ## Aigle 64.1 62.0 21 12 8.52 ## Aubonne 66.9 67.5 14 7 2.27 ## Avenches 68.9 60.7 19 12 4.43 ## Cossonay 61.7 69.3 22 5 2.82 ## Echallens 68.3 72.6 18 2 24.20 ## Grandson 71.7 34.0 17 8 3.30 ## Lausanne 55.7 19.4 26 28 12.11 ## La Vallee 54.3 15.2 31 20 2.15 ## Lavaux 65.1 73.0 19 9 2.84 ## Morges 65.5 59.8 22 10 5.23 ## Moudon 65.0 55.1 14 3 4.52 ## Nyone 56.6 50.9 22 12 15.14 ## Orbe 57.4 54.1 20 6 4.20 ## Oron 72.5 71.2 12 1 2.40 ## Payerne 74.2 58.1 14 8 5.23 ## Paysd'enhaut 72.0 63.5 6 3 2.56 ## Rolle 60.5 60.8 16 10 7.72 ## Vevey 58.3 26.8 25 19 18.46 ## Yverdon 65.4 49.5 15 8 6.10 ## Conthey 75.5 85.9 3 2 99.71 ## Entremont 69.3 84.9 7 6 99.68 ## Herens 77.3 89.7 5 2 100.00 ## Martigwy 70.5 78.2 12 6 98.96 ## Monthey 79.4 64.9 7 3 98.22 ## St Maurice 65.0 75.9 9 9 99.06 ## Sierre 92.2 84.6 3 3 99.46 ## Sion 79.3 63.1 13 13 96.83 ## Boudry 70.4 38.4 26 12 5.62 ## La Chauxdfnd 65.7 7.7 29 11 13.79 ## Le Locle 72.7 16.7 22 13 11.22 ## Neuchatel 64.4 17.6 35 32 16.92 ## Val de Ruz 77.6 37.6 15 7 4.97 ## ValdeTravers 67.6 18.7 25 7 8.65 ## V. De Geneve 35.0 1.2 37 53 42.34 ## Rive Droite 44.7 46.6 16 29 50.43 ## Rive Gauche 42.8 27.7 22 29 58.33 ## Infant.Mortality ## Courtelary 22.2 ## Delemont 22.2 ## Franches-Mnt 20.2 ## Moutier 20.3 ## Neuveville 20.6 ## Porrentruy 26.6 ## Broye 23.6 ## Glane 24.9 ## Gruyere 21.0 ## Sarine 24.4 ## Veveyse 24.5 ## Aigle 16.5 ## Aubonne 19.1 ## Avenches 22.7 ## Cossonay 18.7 ## Echallens 21.2 ## Grandson 20.0 ## Lausanne 20.2 ## La Vallee 10.8 ## Lavaux 20.0 ## Morges 18.0 ## Moudon 22.4 ## Nyone 16.7 ## Orbe 15.3 ## Oron 21.0 ## Payerne 23.8 ## Paysd'enhaut 18.0 ## Rolle 16.3 ## Vevey 20.9 ## Yverdon 22.5 ## Conthey 15.1 ## Entremont 19.8 ## Herens 18.3 ## Martigwy 19.4 ## Monthey 20.2 ## St Maurice 17.8 ## Sierre 16.3 ## Sion 18.1 ## Boudry 20.3 ## La Chauxdfnd 20.5 ## Le Locle 18.9 ## Neuchatel 23.0 ## Val de Ruz 20.0 ## ValdeTravers 19.5 ## V. De Geneve 18.0 ## Rive Droite 18.2 ## Rive Gauche 19.3
Packages that are used:
Data prep:
df<-datasets::swiss County<-rownames(df) df$County<-County setDT(df) df<-df[County %in% County[1:5]]
ggplot(df)+ geom_bar(aes(x=County,y=Education), stat = "identity")+ theme_bw()
Have fun trying some countys :)