‘MyBank’ executed a campaign to cross-sell Personal Loans. As part of their Pilot Campaign, 20000 customers were sent campaigns through email , SMS , and direct mail. They all were given an offer of Personal Loan at an attractive interest rate of 12% and processing fee waived off if they respond within 1 Month. 2512 customer expressed their interest in that campaign.

Hence, ‘MyBank’ wants to find the profitable segments of the customers and target them to cross-sell their personal loans.

Loading the dataset

loan.data <- read.csv("D:/PGP BA-BI Course Materials/DATA MINING/GROUP ASSIGNMENT/PL_XSELL.csv",header = TRUE)

Exploratory Data Analysis

Structure of the data

str(loan.data)
## 'data.frame':    20000 obs. of  40 variables:
##  $ CUST_ID                 : Factor w/ 20000 levels "C1","C10","C100",..: 17699 16532 11027 17984 2363 11747 18115 15556 15216 12494 ...
##  $ TARGET                  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ AGE                     : int  27 47 40 53 36 42 30 53 42 30 ...
##  $ GENDER                  : Factor w/ 3 levels "F","M","O": 2 2 2 2 2 1 2 1 1 2 ...
##  $ BALANCE                 : num  3384 287489 18217 71720 1671623 ...
##  $ OCCUPATION              : Factor w/ 4 levels "PROF","SAL","SELF-EMP",..: 3 2 3 2 1 1 1 2 3 1 ...
##  $ AGE_BKT                 : Factor w/ 7 levels "<25",">50","26-30",..: 3 7 5 2 5 6 3 2 6 3 ...
##  $ SCR                     : int  776 324 603 196 167 493 479 562 105 170 ...
##  $ HOLDING_PERIOD          : int  30 28 2 13 24 26 14 25 15 13 ...
##  $ ACC_TYPE                : Factor w/ 2 levels "CA","SA": 2 2 2 1 2 2 2 1 2 2 ...
##  $ ACC_OP_DATE             : Factor w/ 4869 levels "1/1/2000","1/1/2001",..: 2227 451 2689 3994 1515 3619 4286 2104 2009 2173 ...
##  $ LEN_OF_RLTN_IN_MNTH     : int  146 104 61 107 185 192 177 99 88 111 ...
##  $ NO_OF_L_CR_TXNS         : int  7 8 10 36 20 5 6 14 18 14 ...
##  $ NO_OF_L_DR_TXNS         : int  3 2 5 14 1 2 6 3 14 8 ...
##  $ TOT_NO_OF_L_TXNS        : int  10 10 15 50 21 7 12 17 32 22 ...
##  $ NO_OF_BR_CSH_WDL_DR_TXNS: int  0 0 1 4 1 1 0 3 6 3 ...
##  $ NO_OF_ATM_DR_TXNS       : int  1 1 1 2 0 1 1 0 2 1 ...
##  $ NO_OF_NET_DR_TXNS       : int  2 1 1 3 0 0 1 0 4 0 ...
##  $ NO_OF_MOB_DR_TXNS       : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ NO_OF_CHQ_DR_TXNS       : int  0 0 2 4 0 0 4 0 1 4 ...
##  $ FLG_HAS_CC              : int  0 0 0 0 0 1 0 0 1 0 ...
##  $ AMT_ATM_DR              : int  13100 6600 11200 26100 0 18500 6200 0 35400 18000 ...
##  $ AMT_BR_CSH_WDL_DR       : int  0 0 561120 673590 808480 379310 0 945160 198430 869880 ...
##  $ AMT_CHQ_DR              : int  0 0 49320 60780 0 0 10580 0 51490 32610 ...
##  $ AMT_NET_DR              : num  973557 799813 997570 741506 0 ...
##  $ AMT_MOB_DR              : int  0 0 0 71388 0 0 0 0 170332 0 ...
##  $ AMT_L_DR                : num  986657 806413 1619210 1573364 808480 ...
##  $ FLG_HAS_ANY_CHGS        : int  0 1 1 0 0 0 1 0 0 0 ...
##  $ AMT_OTH_BK_ATM_USG_CHGS : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ AMT_MIN_BAL_NMC_CHGS    : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ NO_OF_IW_CHQ_BNC_TXNS   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ NO_OF_OW_CHQ_BNC_TXNS   : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ AVG_AMT_PER_ATM_TXN     : num  13100 6600 11200 13050 0 ...
##  $ AVG_AMT_PER_CSH_WDL_TXN : num  0 0 561120 168398 808480 ...
##  $ AVG_AMT_PER_CHQ_TXN     : num  0 0 24660 15195 0 ...
##  $ AVG_AMT_PER_NET_TXN     : num  486779 799813 997570 247169 0 ...
##  $ AVG_AMT_PER_MOB_TXN     : num  0 0 0 71388 0 ...
##  $ FLG_HAS_NOMINEE         : int  1 1 1 1 1 1 0 1 1 0 ...
##  $ FLG_HAS_OLD_LOAN        : int  1 0 1 0 0 1 1 1 1 0 ...
##  $ random                  : num  1.14e-05 1.11e-04 1.20e-04 1.37e-04 1.74e-04 ...

The given dataset has 20,000 customers data with 40 variables . We can also see the data type of each variable in the dataset.

Summary of the data

summary(loan.data)
##     CUST_ID          TARGET            AGE        GENDER   
##  C1     :    1   Min.   :0.0000   Min.   :21.00   F: 5433  
##  C10    :    1   1st Qu.:0.0000   1st Qu.:30.00   M:14376  
##  C100   :    1   Median :0.0000   Median :38.00   O:  191  
##  C1000  :    1   Mean   :0.1256   Mean   :38.42            
##  C10000 :    1   3rd Qu.:0.0000   3rd Qu.:46.00            
##  C10001 :    1   Max.   :1.0000   Max.   :55.00            
##  (Other):19994                                             
##     BALANCE           OCCUPATION    AGE_BKT          SCR       
##  Min.   :      0   PROF    :5417   <25  :1753   Min.   :100.0  
##  1st Qu.:  64754   SAL     :5855   >50  :3035   1st Qu.:227.0  
##  Median : 231676   SELF-EMP:3568   26-30:3434   Median :364.0  
##  Mean   : 511362   SENP    :5160   31-35:3404   Mean   :440.2  
##  3rd Qu.: 653877                   36-40:2814   3rd Qu.:644.0  
##  Max.   :8360431                   41-45:3067   Max.   :999.0  
##                                    46-50:2493                  
##  HOLDING_PERIOD  ACC_TYPE       ACC_OP_DATE    LEN_OF_RLTN_IN_MNTH
##  Min.   : 1.00   CA: 4241   11/16/2010:   24   Min.   : 29.0      
##  1st Qu.: 7.00   SA:15759   4/3/2009  :   23   1st Qu.: 79.0      
##  Median :15.00              7/25/2010 :   22   Median :125.0      
##  Mean   :14.96              5/6/2013  :   21   Mean   :125.2      
##  3rd Qu.:22.00              2/7/2007  :   20   3rd Qu.:172.0      
##  Max.   :31.00              8/24/2010 :   20   Max.   :221.0      
##                             (Other)   :19870                      
##  NO_OF_L_CR_TXNS NO_OF_L_DR_TXNS  TOT_NO_OF_L_TXNS
##  Min.   : 0.00   Min.   : 0.000   Min.   :  0.00  
##  1st Qu.: 6.00   1st Qu.: 2.000   1st Qu.:  9.00  
##  Median :10.00   Median : 5.000   Median : 14.00  
##  Mean   :12.35   Mean   : 6.634   Mean   : 18.98  
##  3rd Qu.:14.00   3rd Qu.: 7.000   3rd Qu.: 21.00  
##  Max.   :75.00   Max.   :74.000   Max.   :149.00  
##                                                   
##  NO_OF_BR_CSH_WDL_DR_TXNS NO_OF_ATM_DR_TXNS NO_OF_NET_DR_TXNS
##  Min.   : 0.000           Min.   : 0.000    Min.   : 0.000   
##  1st Qu.: 1.000           1st Qu.: 0.000    1st Qu.: 0.000   
##  Median : 1.000           Median : 1.000    Median : 0.000   
##  Mean   : 1.883           Mean   : 1.029    Mean   : 1.172   
##  3rd Qu.: 2.000           3rd Qu.: 1.000    3rd Qu.: 1.000   
##  Max.   :15.000           Max.   :25.000    Max.   :22.000   
##                                                              
##  NO_OF_MOB_DR_TXNS NO_OF_CHQ_DR_TXNS   FLG_HAS_CC       AMT_ATM_DR    
##  Min.   : 0.0000   Min.   : 0.000    Min.   :0.0000   Min.   :     0  
##  1st Qu.: 0.0000   1st Qu.: 0.000    1st Qu.:0.0000   1st Qu.:     0  
##  Median : 0.0000   Median : 2.000    Median :0.0000   Median :  6900  
##  Mean   : 0.4118   Mean   : 2.138    Mean   :0.3054   Mean   : 10990  
##  3rd Qu.: 0.0000   3rd Qu.: 4.000    3rd Qu.:1.0000   3rd Qu.: 15800  
##  Max.   :25.0000   Max.   :15.000    Max.   :1.0000   Max.   :199300  
##                                                                       
##  AMT_BR_CSH_WDL_DR   AMT_CHQ_DR        AMT_NET_DR       AMT_MOB_DR    
##  Min.   :     0    Min.   :      0   Min.   :     0   Min.   :     0  
##  1st Qu.:  2990    1st Qu.:      0   1st Qu.:     0   1st Qu.:     0  
##  Median :340150    Median :  23840   Median :     0   Median :     0  
##  Mean   :378475    Mean   : 124520   Mean   :237308   Mean   : 22425  
##  3rd Qu.:674675    3rd Qu.:  72470   3rd Qu.:473971   3rd Qu.:     0  
##  Max.   :999930    Max.   :4928640   Max.   :999854   Max.   :199667  
##                                                                       
##     AMT_L_DR       FLG_HAS_ANY_CHGS AMT_OTH_BK_ATM_USG_CHGS
##  Min.   :      0   Min.   :0.0000   Min.   :  0.000        
##  1st Qu.: 237936   1st Qu.:0.0000   1st Qu.:  0.000        
##  Median : 695115   Median :0.0000   Median :  0.000        
##  Mean   : 773717   Mean   :0.1106   Mean   :  1.099        
##  3rd Qu.:1078927   3rd Qu.:0.0000   3rd Qu.:  0.000        
##  Max.   :6514921   Max.   :1.0000   Max.   :250.000        
##                                                            
##  AMT_MIN_BAL_NMC_CHGS NO_OF_IW_CHQ_BNC_TXNS NO_OF_OW_CHQ_BNC_TXNS
##  Min.   :  0.000      Min.   :0.00000       Min.   :0.0000       
##  1st Qu.:  0.000      1st Qu.:0.00000       1st Qu.:0.0000       
##  Median :  0.000      Median :0.00000       Median :0.0000       
##  Mean   :  1.292      Mean   :0.04275       Mean   :0.0444       
##  3rd Qu.:  0.000      3rd Qu.:0.00000       3rd Qu.:0.0000       
##  Max.   :170.000      Max.   :2.00000       Max.   :2.0000       
##                                                                  
##  AVG_AMT_PER_ATM_TXN AVG_AMT_PER_CSH_WDL_TXN AVG_AMT_PER_CHQ_TXN
##  Min.   :    0       Min.   :     0          Min.   :     0     
##  1st Qu.:    0       1st Qu.:  1266          1st Qu.:     0     
##  Median : 6000       Median :147095          Median :  8645     
##  Mean   : 7409       Mean   :242237          Mean   : 25093     
##  3rd Qu.:13500       3rd Qu.:385000          3rd Qu.: 28605     
##  Max.   :25000       Max.   :999640          Max.   :537842     
##                                                                 
##  AVG_AMT_PER_NET_TXN AVG_AMT_PER_MOB_TXN FLG_HAS_NOMINEE  FLG_HAS_OLD_LOAN
##  Min.   :     0      Min.   :     0      Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:     0      1st Qu.:     0      1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :     0      Median :     0      Median :1.0000   Median :0.0000  
##  Mean   :179059      Mean   : 20304      Mean   :0.9012   Mean   :0.4929  
##  3rd Qu.:257699      3rd Qu.:     0      3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :999854      Max.   :199667      Max.   :1.0000   Max.   :1.0000  
##                                                                           
##      random         
##  Min.   :0.0000114  
##  1st Qu.:0.2481866  
##  Median :0.5061214  
##  Mean   :0.5019330  
##  3rd Qu.:0.7535712  
##  Max.   :0.9999471  
## 

Checking for any missing values in the dataset

library(VIM)
## Warning: package 'VIM' was built under R version 3.4.3
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
## Warning: package 'data.table' was built under R version 3.4.2
## VIM is ready to use. 
##  Since version 4.0.0 the GUI is in its own package VIMGUI.
## 
##           Please use the package to use the new (and old) GUI.
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
library(mice)
## Warning: package 'mice' was built under R version 3.4.3
## Loading required package: lattice
opar <- par(no.readonly = TRUE)
par(bg ="gray63", col="white", col.axis = "white", col.lab = "white", col.main = "white",col.sub = "white")
aggr(loan.data,prop = F,cex.axis = 0.4, numbers = T)

par(opar)

This chart shows the number of missing values if there is any in the dataset.

Visualisation of all the independent variables are done

Correlation matrix plot

num.data <- subset(loan.data[-c(2,4,6,7,10,11,21,28,38,39)])
corr <- cor(num.data[,-1])
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.4.2
## corrplot 0.84 loaded
opar2 <- par(no.readonly = TRUE)
corrplot(corr,method = "circle",tl.cex = 0.5,tl.col = "black",number.cex = 0.55,bg = "grey14",
         addgrid.col = "gray50", tl.offset = 2,col = colorRampPalette(c("blue1","ivory2","firebrick2"))(100))

Changing the format of few variables

loan.data$ACC_OP_DATE <- as.character(loan.data$ACC_OP_DATE)
loan.data$ACC_OP_DATE <- as.Date(loan.data$ACC_OP_DATE, format="%m/%d/%Y")
loan.data$FLG_HAS_CC <- as.factor(loan.data$FLG_HAS_CC)
loan.data$FLG_HAS_ANY_CHGS <- as.factor(loan.data$FLG_HAS_ANY_CHGS)
loan.data$FLG_HAS_NOMINEE <- as.factor(loan.data$FLG_HAS_NOMINEE)
loan.data$FLG_HAS_OLD_LOAN <- as.factor(loan.data$FLG_HAS_OLD_LOAN)

Splitting the given dataset into development and holdout

library(caret)
## Loading required package: ggplot2
set.seed(1407)
split <- createDataPartition(loan.data$TARGET,p = 0.7,list = FALSE,times = 1)
View(split)
RFDF.dev <- loan.data[split,] 
RFDF.holdout <- loan.data[-split,]

Model development - Random Forest technique

library(randomForest)
## Warning: package 'randomForest' was built under R version 3.4.3
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
RF <- randomForest(as.factor(TARGET) ~ ., data = RFDF.dev[,-1], 
                   ntree=501, mtry = 7, nodesize = 140,
                   importance=TRUE)
print(RF)
## 
## Call:
##  randomForest(formula = as.factor(TARGET) ~ ., data = RFDF.dev[,      -1], ntree = 501, mtry = 7, nodesize = 140, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 501
## No. of variables tried at each split: 7
## 
##         OOB estimate of  error rate: 12.09%
## Confusion matrix:
##       0  1 class.error
## 0 12283  0   0.0000000
## 1  1692 25   0.9854397

From the above output, we find that the Out Of Bag (OOB) error rate is estimated as 12.06% which is the misclassification error rate of the model.

Plotting OOB error rates

plot(RF, main="")
legend("topright", c("OOB", "0", "1"), text.col=1:6, lty=1:3, col=1:3)
title(main="Error Rates Random Forest RFDF.dev")

On plotting the OOB error rate across the decision trees, it seems to indicate that after approximately after 21 number of decision trees, there is no significant reduction in the OOB error rate.

RF$err.rate
##              OOB            0         1
##   [1,] 0.1274244 2.336861e-02 0.8887097
##   [2,] 0.1238781 1.785235e-02 0.8998035
##   [3,] 0.1239958 1.495428e-02 0.9121306
##   [4,] 0.1246516 1.528699e-02 0.9145833
##   [5,] 0.1253258 1.304191e-02 0.9333333
##   [6,] 0.1243437 1.101092e-02 0.9377722
##   [7,] 0.1230085 1.080260e-02 0.9307412
##   [8,] 0.1228789 9.247688e-03 0.9400839
##   [9,] 0.1217177 6.777980e-03 0.9454976
##  [10,] 0.1224387 6.002302e-03 0.9564193
##  [11,] 0.1214537 4.911591e-03 0.9554774
##  [12,] 0.1210492 3.512785e-03 0.9614486
##  [13,] 0.1210711 3.182894e-03 0.9638273
##  [14,] 0.1207526 2.609476e-03 0.9650350
##  [15,] 0.1209522 1.792553e-03 0.9731935
##  [16,] 0.1207574 1.547483e-03 0.9732091
##  [17,] 0.1208917 1.303038e-03 0.9761211
##  [18,] 0.1207315 1.139972e-03 0.9761211
##  [19,] 0.1204372 8.141996e-04 0.9761211
##  [20,] 0.1210801 1.139879e-03 0.9790332
##  [21,] 0.1207229 9.770396e-04 0.9772860
##  [22,] 0.1206515 8.141996e-04 0.9778684
##  [23,] 0.1207229 6.513597e-04 0.9796156
##  [24,] 0.1206515 4.070998e-04 0.9807804
##  [25,] 0.1205714 3.256533e-04 0.9807804
##  [26,] 0.1207143 2.442400e-04 0.9825277
##  [27,] 0.1207857 3.256533e-04 0.9825277
##  [28,] 0.1207857 2.442400e-04 0.9831101
##  [29,] 0.1209286 2.442400e-04 0.9842749
##  [30,] 0.1208571 8.141334e-05 0.9848573
##  [31,] 0.1207857 0.000000e+00 0.9848573
##  [32,] 0.1208571 8.141334e-05 0.9848573
##  [33,] 0.1206429 0.000000e+00 0.9836925
##  [34,] 0.1207143 0.000000e+00 0.9842749
##  [35,] 0.1208571 0.000000e+00 0.9854397
##  [36,] 0.1210000 0.000000e+00 0.9866045
##  [37,] 0.1211429 0.000000e+00 0.9877694
##  [38,] 0.1212143 0.000000e+00 0.9883518
##  [39,] 0.1210714 0.000000e+00 0.9871870
##  [40,] 0.1210714 0.000000e+00 0.9871870
##  [41,] 0.1212143 0.000000e+00 0.9883518
##  [42,] 0.1214286 0.000000e+00 0.9900990
##  [43,] 0.1214286 0.000000e+00 0.9900990
##  [44,] 0.1213571 0.000000e+00 0.9895166
##  [45,] 0.1211429 0.000000e+00 0.9877694
##  [46,] 0.1212143 0.000000e+00 0.9883518
##  [47,] 0.1212857 8.141334e-05 0.9883518
##  [48,] 0.1211429 0.000000e+00 0.9877694
##  [49,] 0.1213571 0.000000e+00 0.9895166
##  [50,] 0.1212143 0.000000e+00 0.9883518
##  [51,] 0.1211429 0.000000e+00 0.9877694
##  [52,] 0.1207857 0.000000e+00 0.9848573
##  [53,] 0.1207857 0.000000e+00 0.9848573
##  [54,] 0.1207857 0.000000e+00 0.9848573
##  [55,] 0.1208571 0.000000e+00 0.9854397
##  [56,] 0.1207857 0.000000e+00 0.9848573
##  [57,] 0.1210000 0.000000e+00 0.9866045
##  [58,] 0.1211429 0.000000e+00 0.9877694
##  [59,] 0.1210000 0.000000e+00 0.9866045
##  [60,] 0.1209286 0.000000e+00 0.9860221
##  [61,] 0.1209286 0.000000e+00 0.9860221
##  [62,] 0.1210714 0.000000e+00 0.9871870
##  [63,] 0.1207857 0.000000e+00 0.9848573
##  [64,] 0.1209286 0.000000e+00 0.9860221
##  [65,] 0.1209286 0.000000e+00 0.9860221
##  [66,] 0.1207857 0.000000e+00 0.9848573
##  [67,] 0.1208571 8.141334e-05 0.9848573
##  [68,] 0.1207857 0.000000e+00 0.9848573
##  [69,] 0.1207857 0.000000e+00 0.9848573
##  [70,] 0.1208571 0.000000e+00 0.9854397
##  [71,] 0.1207143 0.000000e+00 0.9842749
##  [72,] 0.1210000 0.000000e+00 0.9866045
##  [73,] 0.1210714 0.000000e+00 0.9871870
##  [74,] 0.1210000 0.000000e+00 0.9866045
##  [75,] 0.1209286 0.000000e+00 0.9860221
##  [76,] 0.1211429 0.000000e+00 0.9877694
##  [77,] 0.1210714 0.000000e+00 0.9871870
##  [78,] 0.1210714 0.000000e+00 0.9871870
##  [79,] 0.1210714 0.000000e+00 0.9871870
##  [80,] 0.1210000 0.000000e+00 0.9866045
##  [81,] 0.1210714 0.000000e+00 0.9871870
##  [82,] 0.1210714 0.000000e+00 0.9871870
##  [83,] 0.1208571 0.000000e+00 0.9854397
##  [84,] 0.1210000 0.000000e+00 0.9866045
##  [85,] 0.1210714 0.000000e+00 0.9871870
##  [86,] 0.1210714 0.000000e+00 0.9871870
##  [87,] 0.1210000 0.000000e+00 0.9866045
##  [88,] 0.1211429 0.000000e+00 0.9877694
##  [89,] 0.1209286 0.000000e+00 0.9860221
##  [90,] 0.1210000 0.000000e+00 0.9866045
##  [91,] 0.1210714 0.000000e+00 0.9871870
##  [92,] 0.1211429 0.000000e+00 0.9877694
##  [93,] 0.1212143 0.000000e+00 0.9883518
##  [94,] 0.1210714 0.000000e+00 0.9871870
##  [95,] 0.1212143 0.000000e+00 0.9883518
##  [96,] 0.1210000 0.000000e+00 0.9866045
##  [97,] 0.1208571 0.000000e+00 0.9854397
##  [98,] 0.1207143 0.000000e+00 0.9842749
##  [99,] 0.1209286 0.000000e+00 0.9860221
## [100,] 0.1210000 0.000000e+00 0.9866045
## [101,] 0.1209286 0.000000e+00 0.9860221
## [102,] 0.1211429 0.000000e+00 0.9877694
## [103,] 0.1211429 0.000000e+00 0.9877694
## [104,] 0.1209286 0.000000e+00 0.9860221
## [105,] 0.1210714 0.000000e+00 0.9871870
## [106,] 0.1209286 0.000000e+00 0.9860221
## [107,] 0.1210714 0.000000e+00 0.9871870
## [108,] 0.1210714 0.000000e+00 0.9871870
## [109,] 0.1209286 0.000000e+00 0.9860221
## [110,] 0.1210000 0.000000e+00 0.9866045
## [111,] 0.1210714 0.000000e+00 0.9871870
## [112,] 0.1209286 0.000000e+00 0.9860221
## [113,] 0.1208571 0.000000e+00 0.9854397
## [114,] 0.1209286 0.000000e+00 0.9860221
## [115,] 0.1208571 0.000000e+00 0.9854397
## [116,] 0.1210714 0.000000e+00 0.9871870
## [117,] 0.1210000 0.000000e+00 0.9866045
## [118,] 0.1210714 0.000000e+00 0.9871870
## [119,] 0.1210000 0.000000e+00 0.9866045
## [120,] 0.1210000 0.000000e+00 0.9866045
## [121,] 0.1210714 0.000000e+00 0.9871870
## [122,] 0.1210714 0.000000e+00 0.9871870
## [123,] 0.1210000 0.000000e+00 0.9866045
## [124,] 0.1210714 0.000000e+00 0.9871870
## [125,] 0.1210714 0.000000e+00 0.9871870
## [126,] 0.1210000 0.000000e+00 0.9866045
## [127,] 0.1210714 0.000000e+00 0.9871870
## [128,] 0.1211429 0.000000e+00 0.9877694
## [129,] 0.1209286 0.000000e+00 0.9860221
## [130,] 0.1210000 0.000000e+00 0.9866045
## [131,] 0.1210000 0.000000e+00 0.9866045
## [132,] 0.1211429 0.000000e+00 0.9877694
## [133,] 0.1210714 0.000000e+00 0.9871870
## [134,] 0.1210000 0.000000e+00 0.9866045
## [135,] 0.1211429 0.000000e+00 0.9877694
## [136,] 0.1211429 0.000000e+00 0.9877694
## [137,] 0.1211429 0.000000e+00 0.9877694
## [138,] 0.1211429 0.000000e+00 0.9877694
## [139,] 0.1212143 0.000000e+00 0.9883518
## [140,] 0.1212143 0.000000e+00 0.9883518
## [141,] 0.1210714 0.000000e+00 0.9871870
## [142,] 0.1209286 0.000000e+00 0.9860221
## [143,] 0.1209286 0.000000e+00 0.9860221
## [144,] 0.1210714 0.000000e+00 0.9871870
## [145,] 0.1210000 0.000000e+00 0.9866045
## [146,] 0.1210000 0.000000e+00 0.9866045
## [147,] 0.1208571 0.000000e+00 0.9854397
## [148,] 0.1209286 0.000000e+00 0.9860221
## [149,] 0.1208571 0.000000e+00 0.9854397
## [150,] 0.1209286 0.000000e+00 0.9860221
## [151,] 0.1209286 0.000000e+00 0.9860221
## [152,] 0.1210000 0.000000e+00 0.9866045
## [153,] 0.1210000 0.000000e+00 0.9866045
## [154,] 0.1210000 0.000000e+00 0.9866045
## [155,] 0.1210000 0.000000e+00 0.9866045
## [156,] 0.1209286 0.000000e+00 0.9860221
## [157,] 0.1209286 0.000000e+00 0.9860221
## [158,] 0.1210000 0.000000e+00 0.9866045
## [159,] 0.1210000 0.000000e+00 0.9866045
## [160,] 0.1210714 0.000000e+00 0.9871870
## [161,] 0.1209286 0.000000e+00 0.9860221
## [162,] 0.1210000 0.000000e+00 0.9866045
## [163,] 0.1208571 0.000000e+00 0.9854397
## [164,] 0.1209286 0.000000e+00 0.9860221
## [165,] 0.1208571 0.000000e+00 0.9854397
## [166,] 0.1207857 0.000000e+00 0.9848573
## [167,] 0.1207857 0.000000e+00 0.9848573
## [168,] 0.1207857 0.000000e+00 0.9848573
## [169,] 0.1208571 0.000000e+00 0.9854397
## [170,] 0.1208571 0.000000e+00 0.9854397
## [171,] 0.1208571 0.000000e+00 0.9854397
## [172,] 0.1210000 0.000000e+00 0.9866045
## [173,] 0.1211429 0.000000e+00 0.9877694
## [174,] 0.1210000 0.000000e+00 0.9866045
## [175,] 0.1210714 0.000000e+00 0.9871870
## [176,] 0.1210714 0.000000e+00 0.9871870
## [177,] 0.1210714 0.000000e+00 0.9871870
## [178,] 0.1208571 0.000000e+00 0.9854397
## [179,] 0.1210000 0.000000e+00 0.9866045
## [180,] 0.1210000 0.000000e+00 0.9866045
## [181,] 0.1208571 0.000000e+00 0.9854397
## [182,] 0.1208571 0.000000e+00 0.9854397
## [183,] 0.1210000 0.000000e+00 0.9866045
## [184,] 0.1209286 0.000000e+00 0.9860221
## [185,] 0.1210714 0.000000e+00 0.9871870
## [186,] 0.1209286 0.000000e+00 0.9860221
## [187,] 0.1209286 0.000000e+00 0.9860221
## [188,] 0.1208571 0.000000e+00 0.9854397
## [189,] 0.1208571 0.000000e+00 0.9854397
## [190,] 0.1209286 0.000000e+00 0.9860221
## [191,] 0.1209286 0.000000e+00 0.9860221
## [192,] 0.1209286 0.000000e+00 0.9860221
## [193,] 0.1210000 0.000000e+00 0.9866045
## [194,] 0.1210000 0.000000e+00 0.9866045
## [195,] 0.1209286 0.000000e+00 0.9860221
## [196,] 0.1210000 0.000000e+00 0.9866045
## [197,] 0.1210000 0.000000e+00 0.9866045
## [198,] 0.1210000 0.000000e+00 0.9866045
## [199,] 0.1210000 0.000000e+00 0.9866045
## [200,] 0.1210714 0.000000e+00 0.9871870
## [201,] 0.1210714 0.000000e+00 0.9871870
## [202,] 0.1210000 0.000000e+00 0.9866045
## [203,] 0.1209286 0.000000e+00 0.9860221
## [204,] 0.1211429 0.000000e+00 0.9877694
## [205,] 0.1210000 0.000000e+00 0.9866045
## [206,] 0.1210714 0.000000e+00 0.9871870
## [207,] 0.1210714 0.000000e+00 0.9871870
## [208,] 0.1209286 0.000000e+00 0.9860221
## [209,] 0.1209286 0.000000e+00 0.9860221
## [210,] 0.1210000 0.000000e+00 0.9866045
## [211,] 0.1210000 0.000000e+00 0.9866045
## [212,] 0.1210000 0.000000e+00 0.9866045
## [213,] 0.1209286 0.000000e+00 0.9860221
## [214,] 0.1210000 0.000000e+00 0.9866045
## [215,] 0.1209286 0.000000e+00 0.9860221
## [216,] 0.1208571 0.000000e+00 0.9854397
## [217,] 0.1207857 0.000000e+00 0.9848573
## [218,] 0.1209286 0.000000e+00 0.9860221
## [219,] 0.1208571 0.000000e+00 0.9854397
## [220,] 0.1208571 0.000000e+00 0.9854397
## [221,] 0.1208571 0.000000e+00 0.9854397
## [222,] 0.1209286 0.000000e+00 0.9860221
## [223,] 0.1208571 0.000000e+00 0.9854397
## [224,] 0.1207857 0.000000e+00 0.9848573
## [225,] 0.1207857 0.000000e+00 0.9848573
## [226,] 0.1207857 0.000000e+00 0.9848573
## [227,] 0.1208571 0.000000e+00 0.9854397
## [228,] 0.1208571 0.000000e+00 0.9854397
## [229,] 0.1208571 0.000000e+00 0.9854397
## [230,] 0.1208571 0.000000e+00 0.9854397
## [231,] 0.1208571 0.000000e+00 0.9854397
## [232,] 0.1208571 0.000000e+00 0.9854397
## [233,] 0.1208571 0.000000e+00 0.9854397
## [234,] 0.1207857 0.000000e+00 0.9848573
## [235,] 0.1208571 0.000000e+00 0.9854397
## [236,] 0.1208571 0.000000e+00 0.9854397
## [237,] 0.1208571 0.000000e+00 0.9854397
## [238,] 0.1209286 0.000000e+00 0.9860221
## [239,] 0.1208571 0.000000e+00 0.9854397
## [240,] 0.1209286 0.000000e+00 0.9860221
## [241,] 0.1209286 0.000000e+00 0.9860221
## [242,] 0.1209286 0.000000e+00 0.9860221
## [243,] 0.1209286 0.000000e+00 0.9860221
## [244,] 0.1209286 0.000000e+00 0.9860221
## [245,] 0.1208571 0.000000e+00 0.9854397
## [246,] 0.1208571 0.000000e+00 0.9854397
## [247,] 0.1209286 0.000000e+00 0.9860221
## [248,] 0.1210000 0.000000e+00 0.9866045
## [249,] 0.1209286 0.000000e+00 0.9860221
## [250,] 0.1210000 0.000000e+00 0.9866045
## [251,] 0.1209286 0.000000e+00 0.9860221
## [252,] 0.1209286 0.000000e+00 0.9860221
## [253,] 0.1209286 0.000000e+00 0.9860221
## [254,] 0.1209286 0.000000e+00 0.9860221
## [255,] 0.1209286 0.000000e+00 0.9860221
## [256,] 0.1210000 0.000000e+00 0.9866045
## [257,] 0.1209286 0.000000e+00 0.9860221
## [258,] 0.1209286 0.000000e+00 0.9860221
## [259,] 0.1209286 0.000000e+00 0.9860221
## [260,] 0.1209286 0.000000e+00 0.9860221
## [261,] 0.1209286 0.000000e+00 0.9860221
## [262,] 0.1209286 0.000000e+00 0.9860221
## [263,] 0.1209286 0.000000e+00 0.9860221
## [264,] 0.1209286 0.000000e+00 0.9860221
## [265,] 0.1209286 0.000000e+00 0.9860221
## [266,] 0.1209286 0.000000e+00 0.9860221
## [267,] 0.1209286 0.000000e+00 0.9860221
## [268,] 0.1209286 0.000000e+00 0.9860221
## [269,] 0.1209286 0.000000e+00 0.9860221
## [270,] 0.1209286 0.000000e+00 0.9860221
## [271,] 0.1209286 0.000000e+00 0.9860221
## [272,] 0.1209286 0.000000e+00 0.9860221
## [273,] 0.1208571 0.000000e+00 0.9854397
## [274,] 0.1209286 0.000000e+00 0.9860221
## [275,] 0.1209286 0.000000e+00 0.9860221
## [276,] 0.1209286 0.000000e+00 0.9860221
## [277,] 0.1209286 0.000000e+00 0.9860221
## [278,] 0.1209286 0.000000e+00 0.9860221
## [279,] 0.1209286 0.000000e+00 0.9860221
## [280,] 0.1209286 0.000000e+00 0.9860221
## [281,] 0.1209286 0.000000e+00 0.9860221
## [282,] 0.1209286 0.000000e+00 0.9860221
## [283,] 0.1209286 0.000000e+00 0.9860221
## [284,] 0.1209286 0.000000e+00 0.9860221
## [285,] 0.1209286 0.000000e+00 0.9860221
## [286,] 0.1209286 0.000000e+00 0.9860221
## [287,] 0.1210000 0.000000e+00 0.9866045
## [288,] 0.1209286 0.000000e+00 0.9860221
## [289,] 0.1210000 0.000000e+00 0.9866045
## [290,] 0.1210000 0.000000e+00 0.9866045
## [291,] 0.1210000 0.000000e+00 0.9866045
## [292,] 0.1209286 0.000000e+00 0.9860221
## [293,] 0.1209286 0.000000e+00 0.9860221
## [294,] 0.1210000 0.000000e+00 0.9866045
## [295,] 0.1209286 0.000000e+00 0.9860221
## [296,] 0.1208571 0.000000e+00 0.9854397
## [297,] 0.1208571 0.000000e+00 0.9854397
## [298,] 0.1208571 0.000000e+00 0.9854397
## [299,] 0.1208571 0.000000e+00 0.9854397
## [300,] 0.1208571 0.000000e+00 0.9854397
## [301,] 0.1208571 0.000000e+00 0.9854397
## [302,] 0.1208571 0.000000e+00 0.9854397
## [303,] 0.1208571 0.000000e+00 0.9854397
## [304,] 0.1208571 0.000000e+00 0.9854397
## [305,] 0.1207857 0.000000e+00 0.9848573
## [306,] 0.1207857 0.000000e+00 0.9848573
## [307,] 0.1207857 0.000000e+00 0.9848573
## [308,] 0.1208571 0.000000e+00 0.9854397
## [309,] 0.1207857 0.000000e+00 0.9848573
## [310,] 0.1207143 0.000000e+00 0.9842749
## [311,] 0.1207143 0.000000e+00 0.9842749
## [312,] 0.1207143 0.000000e+00 0.9842749
## [313,] 0.1207857 0.000000e+00 0.9848573
## [314,] 0.1207143 0.000000e+00 0.9842749
## [315,] 0.1207857 0.000000e+00 0.9848573
## [316,] 0.1207143 0.000000e+00 0.9842749
## [317,] 0.1207857 0.000000e+00 0.9848573
## [318,] 0.1207143 0.000000e+00 0.9842749
## [319,] 0.1207143 0.000000e+00 0.9842749
## [320,] 0.1206429 0.000000e+00 0.9836925
## [321,] 0.1206429 0.000000e+00 0.9836925
## [322,] 0.1207857 0.000000e+00 0.9848573
## [323,] 0.1207143 0.000000e+00 0.9842749
## [324,] 0.1207857 0.000000e+00 0.9848573
## [325,] 0.1207857 0.000000e+00 0.9848573
## [326,] 0.1207143 0.000000e+00 0.9842749
## [327,] 0.1207857 0.000000e+00 0.9848573
## [328,] 0.1207857 0.000000e+00 0.9848573
## [329,] 0.1207857 0.000000e+00 0.9848573
## [330,] 0.1207857 0.000000e+00 0.9848573
## [331,] 0.1207857 0.000000e+00 0.9848573
## [332,] 0.1207857 0.000000e+00 0.9848573
## [333,] 0.1207857 0.000000e+00 0.9848573
## [334,] 0.1207143 0.000000e+00 0.9842749
## [335,] 0.1207143 0.000000e+00 0.9842749
## [336,] 0.1207143 0.000000e+00 0.9842749
## [337,] 0.1207143 0.000000e+00 0.9842749
## [338,] 0.1207143 0.000000e+00 0.9842749
## [339,] 0.1207857 0.000000e+00 0.9848573
## [340,] 0.1208571 0.000000e+00 0.9854397
## [341,] 0.1207143 0.000000e+00 0.9842749
## [342,] 0.1207143 0.000000e+00 0.9842749
## [343,] 0.1207143 0.000000e+00 0.9842749
## [344,] 0.1207143 0.000000e+00 0.9842749
## [345,] 0.1207143 0.000000e+00 0.9842749
## [346,] 0.1207143 0.000000e+00 0.9842749
## [347,] 0.1207143 0.000000e+00 0.9842749
## [348,] 0.1207857 0.000000e+00 0.9848573
## [349,] 0.1207143 0.000000e+00 0.9842749
## [350,] 0.1207857 0.000000e+00 0.9848573
## [351,] 0.1207857 0.000000e+00 0.9848573
## [352,] 0.1207857 0.000000e+00 0.9848573
## [353,] 0.1207857 0.000000e+00 0.9848573
## [354,] 0.1207143 0.000000e+00 0.9842749
## [355,] 0.1207857 0.000000e+00 0.9848573
## [356,] 0.1207143 0.000000e+00 0.9842749
## [357,] 0.1207857 0.000000e+00 0.9848573
## [358,] 0.1207857 0.000000e+00 0.9848573
## [359,] 0.1207857 0.000000e+00 0.9848573
## [360,] 0.1207857 0.000000e+00 0.9848573
## [361,] 0.1207857 0.000000e+00 0.9848573
## [362,] 0.1207857 0.000000e+00 0.9848573
## [363,] 0.1207857 0.000000e+00 0.9848573
## [364,] 0.1207857 0.000000e+00 0.9848573
## [365,] 0.1207857 0.000000e+00 0.9848573
## [366,] 0.1207857 0.000000e+00 0.9848573
## [367,] 0.1207857 0.000000e+00 0.9848573
## [368,] 0.1207857 0.000000e+00 0.9848573
## [369,] 0.1207857 0.000000e+00 0.9848573
## [370,] 0.1207857 0.000000e+00 0.9848573
## [371,] 0.1207857 0.000000e+00 0.9848573
## [372,] 0.1207857 0.000000e+00 0.9848573
## [373,] 0.1207857 0.000000e+00 0.9848573
## [374,] 0.1207857 0.000000e+00 0.9848573
## [375,] 0.1207857 0.000000e+00 0.9848573
## [376,] 0.1207857 0.000000e+00 0.9848573
## [377,] 0.1207857 0.000000e+00 0.9848573
## [378,] 0.1207143 0.000000e+00 0.9842749
## [379,] 0.1207143 0.000000e+00 0.9842749
## [380,] 0.1207143 0.000000e+00 0.9842749
## [381,] 0.1207143 0.000000e+00 0.9842749
## [382,] 0.1207143 0.000000e+00 0.9842749
## [383,] 0.1207143 0.000000e+00 0.9842749
## [384,] 0.1207143 0.000000e+00 0.9842749
## [385,] 0.1207143 0.000000e+00 0.9842749
## [386,] 0.1207857 0.000000e+00 0.9848573
## [387,] 0.1207857 0.000000e+00 0.9848573
## [388,] 0.1207857 0.000000e+00 0.9848573
## [389,] 0.1207857 0.000000e+00 0.9848573
## [390,] 0.1207857 0.000000e+00 0.9848573
## [391,] 0.1207857 0.000000e+00 0.9848573
## [392,] 0.1207857 0.000000e+00 0.9848573
## [393,] 0.1207857 0.000000e+00 0.9848573
## [394,] 0.1207857 0.000000e+00 0.9848573
## [395,] 0.1207857 0.000000e+00 0.9848573
## [396,] 0.1207857 0.000000e+00 0.9848573
## [397,] 0.1207143 0.000000e+00 0.9842749
## [398,] 0.1207857 0.000000e+00 0.9848573
## [399,] 0.1207857 0.000000e+00 0.9848573
## [400,] 0.1207857 0.000000e+00 0.9848573
## [401,] 0.1207857 0.000000e+00 0.9848573
## [402,] 0.1207857 0.000000e+00 0.9848573
## [403,] 0.1207857 0.000000e+00 0.9848573
## [404,] 0.1207857 0.000000e+00 0.9848573
## [405,] 0.1207857 0.000000e+00 0.9848573
## [406,] 0.1207857 0.000000e+00 0.9848573
## [407,] 0.1207857 0.000000e+00 0.9848573
## [408,] 0.1207857 0.000000e+00 0.9848573
## [409,] 0.1207857 0.000000e+00 0.9848573
## [410,] 0.1207857 0.000000e+00 0.9848573
## [411,] 0.1207857 0.000000e+00 0.9848573
## [412,] 0.1207857 0.000000e+00 0.9848573
## [413,] 0.1207857 0.000000e+00 0.9848573
## [414,] 0.1207857 0.000000e+00 0.9848573
## [415,] 0.1207857 0.000000e+00 0.9848573
## [416,] 0.1207857 0.000000e+00 0.9848573
## [417,] 0.1207857 0.000000e+00 0.9848573
## [418,] 0.1207857 0.000000e+00 0.9848573
## [419,] 0.1207857 0.000000e+00 0.9848573
## [420,] 0.1207857 0.000000e+00 0.9848573
## [421,] 0.1207857 0.000000e+00 0.9848573
## [422,] 0.1207857 0.000000e+00 0.9848573
## [423,] 0.1207857 0.000000e+00 0.9848573
## [424,] 0.1208571 0.000000e+00 0.9854397
## [425,] 0.1208571 0.000000e+00 0.9854397
## [426,] 0.1209286 0.000000e+00 0.9860221
## [427,] 0.1208571 0.000000e+00 0.9854397
## [428,] 0.1208571 0.000000e+00 0.9854397
## [429,] 0.1209286 0.000000e+00 0.9860221
## [430,] 0.1209286 0.000000e+00 0.9860221
## [431,] 0.1209286 0.000000e+00 0.9860221
## [432,] 0.1209286 0.000000e+00 0.9860221
## [433,] 0.1209286 0.000000e+00 0.9860221
## [434,] 0.1209286 0.000000e+00 0.9860221
## [435,] 0.1209286 0.000000e+00 0.9860221
## [436,] 0.1209286 0.000000e+00 0.9860221
## [437,] 0.1209286 0.000000e+00 0.9860221
## [438,] 0.1209286 0.000000e+00 0.9860221
## [439,] 0.1208571 0.000000e+00 0.9854397
## [440,] 0.1208571 0.000000e+00 0.9854397
## [441,] 0.1207857 0.000000e+00 0.9848573
## [442,] 0.1209286 0.000000e+00 0.9860221
## [443,] 0.1208571 0.000000e+00 0.9854397
## [444,] 0.1208571 0.000000e+00 0.9854397
## [445,] 0.1208571 0.000000e+00 0.9854397
## [446,] 0.1208571 0.000000e+00 0.9854397
## [447,] 0.1209286 0.000000e+00 0.9860221
## [448,] 0.1209286 0.000000e+00 0.9860221
## [449,] 0.1209286 0.000000e+00 0.9860221
## [450,] 0.1209286 0.000000e+00 0.9860221
## [451,] 0.1209286 0.000000e+00 0.9860221
## [452,] 0.1208571 0.000000e+00 0.9854397
## [453,] 0.1207857 0.000000e+00 0.9848573
## [454,] 0.1209286 0.000000e+00 0.9860221
## [455,] 0.1207857 0.000000e+00 0.9848573
## [456,] 0.1208571 0.000000e+00 0.9854397
## [457,] 0.1208571 0.000000e+00 0.9854397
## [458,] 0.1208571 0.000000e+00 0.9854397
## [459,] 0.1208571 0.000000e+00 0.9854397
## [460,] 0.1208571 0.000000e+00 0.9854397
## [461,] 0.1208571 0.000000e+00 0.9854397
## [462,] 0.1210000 0.000000e+00 0.9866045
## [463,] 0.1210000 0.000000e+00 0.9866045
## [464,] 0.1209286 0.000000e+00 0.9860221
## [465,] 0.1208571 0.000000e+00 0.9854397
## [466,] 0.1208571 0.000000e+00 0.9854397
## [467,] 0.1208571 0.000000e+00 0.9854397
## [468,] 0.1210000 0.000000e+00 0.9866045
## [469,] 0.1208571 0.000000e+00 0.9854397
## [470,] 0.1210000 0.000000e+00 0.9866045
## [471,] 0.1208571 0.000000e+00 0.9854397
## [472,] 0.1209286 0.000000e+00 0.9860221
## [473,] 0.1209286 0.000000e+00 0.9860221
## [474,] 0.1209286 0.000000e+00 0.9860221
## [475,] 0.1209286 0.000000e+00 0.9860221
## [476,] 0.1208571 0.000000e+00 0.9854397
## [477,] 0.1208571 0.000000e+00 0.9854397
## [478,] 0.1208571 0.000000e+00 0.9854397
## [479,] 0.1207857 0.000000e+00 0.9848573
## [480,] 0.1208571 0.000000e+00 0.9854397
## [481,] 0.1207857 0.000000e+00 0.9848573
## [482,] 0.1207857 0.000000e+00 0.9848573
## [483,] 0.1208571 0.000000e+00 0.9854397
## [484,] 0.1207143 0.000000e+00 0.9842749
## [485,] 0.1207857 0.000000e+00 0.9848573
## [486,] 0.1207143 0.000000e+00 0.9842749
## [487,] 0.1207143 0.000000e+00 0.9842749
## [488,] 0.1207143 0.000000e+00 0.9842749
## [489,] 0.1207857 0.000000e+00 0.9848573
## [490,] 0.1207857 0.000000e+00 0.9848573
## [491,] 0.1207857 0.000000e+00 0.9848573
## [492,] 0.1207857 0.000000e+00 0.9848573
## [493,] 0.1207857 0.000000e+00 0.9848573
## [494,] 0.1207857 0.000000e+00 0.9848573
## [495,] 0.1207143 0.000000e+00 0.9842749
## [496,] 0.1207143 0.000000e+00 0.9842749
## [497,] 0.1207143 0.000000e+00 0.9842749
## [498,] 0.1207857 0.000000e+00 0.9848573
## [499,] 0.1207857 0.000000e+00 0.9848573
## [500,] 0.1207857 0.000000e+00 0.9848573
## [501,] 0.1208571 0.000000e+00 0.9854397

Tuning Random Forest model

tRF <- tuneRF(x = RFDF.dev[,-c(1,2)], 
              y=as.factor(RFDF.dev$TARGET),
              mtryStart = 7, 
              ntreeTry=21, 
              stepFactor = 1.5, 
              improve = 0.001, 
              trace = TRUE, 
              plot = TRUE,
              doBest = TRUE,
              nodesize = 140, 
              importance= TRUE
)
## mtry = 7  OOB error = 12.02% 
## Searching left ...
## mtry = 5     OOB error = 11.91% 
## 0.009648332 0.001 
## mtry = 4     OOB error = 12.16% 
## -0.0209958 0.001 
## Searching right ...
## mtry = 10    OOB error = 11.97% 
## -0.004870817 0.001

print(tRF)
## 
## Call:
##  randomForest(x = x, y = y, mtry = res[which.min(res[, 2]), 1],      nodesize = 140, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##         OOB estimate of  error rate: 12.16%
## Confusion matrix:
##       0  1 class.error
## 0 12283  0   0.0000000
## 1  1703 14   0.9918462

Identifying the significant varibales in the dataset

tRF$importance
##                                      0             1 MeanDecreaseAccuracy
## AGE                       3.425897e-04  1.944746e-03         5.403062e-04
## GENDER                    5.602546e-04  2.159199e-03         7.560659e-04
## BALANCE                   7.762846e-04  1.143337e-02         2.079991e-03
## OCCUPATION                1.377326e-03  1.095613e-02         2.555519e-03
## AGE_BKT                   4.583121e-04  3.154720e-03         7.891677e-04
## SCR                       8.933981e-04  1.025355e-02         2.042070e-03
## HOLDING_PERIOD            4.563459e-03  6.315845e-03         4.774016e-03
## ACC_TYPE                  1.778926e-03 -1.320389e-03         1.400183e-03
## ACC_OP_DATE               2.885858e-03  5.268199e-04         2.594024e-03
## LEN_OF_RLTN_IN_MNTH       2.772508e-03 -2.309647e-04         2.400984e-03
## NO_OF_L_CR_TXNS           1.470998e-02 -3.876875e-03         1.242617e-02
## NO_OF_L_DR_TXNS           1.837587e-02 -6.761351e-03         1.528969e-02
## TOT_NO_OF_L_TXNS          1.664199e-02 -4.842343e-03         1.400249e-02
## NO_OF_BR_CSH_WDL_DR_TXNS  1.010543e-03  1.661191e-03         1.090779e-03
## NO_OF_ATM_DR_TXNS         1.947562e-02 -1.063444e-02         1.578222e-02
## NO_OF_NET_DR_TXNS         3.074151e-03  1.609162e-04         2.716221e-03
## NO_OF_MOB_DR_TXNS         1.842988e-03 -1.040690e-03         1.489555e-03
## NO_OF_CHQ_DR_TXNS         5.474617e-03 -6.611069e-04         4.718458e-03
## FLG_HAS_CC                8.107237e-04  8.042513e-03         1.698962e-03
## AMT_ATM_DR                9.628617e-03 -4.360724e-03         7.900483e-03
## AMT_BR_CSH_WDL_DR         3.222519e-03  1.130201e-03         2.967169e-03
## AMT_CHQ_DR                8.159171e-03 -2.767488e-03         6.802306e-03
## AMT_NET_DR                3.549619e-03 -2.216997e-04         3.083763e-03
## AMT_MOB_DR                3.034428e-03 -1.390956e-03         2.487666e-03
## AMT_L_DR                  7.265713e-03 -1.418221e-03         6.196285e-03
## FLG_HAS_ANY_CHGS          7.499825e-05  2.774578e-04         9.985385e-05
## AMT_OTH_BK_ATM_USG_CHGS  -3.090926e-06  4.233552e-05         2.328998e-06
## AMT_MIN_BAL_NMC_CHGS      1.675474e-05  7.234532e-05         2.370808e-05
## NO_OF_IW_CHQ_BNC_TXNS     3.280957e-05  1.229900e-04         4.384442e-05
## NO_OF_OW_CHQ_BNC_TXNS     5.618289e-05  1.498884e-04         6.759989e-05
## AVG_AMT_PER_ATM_TXN       1.027024e-02 -4.515455e-03         8.470218e-03
## AVG_AMT_PER_CSH_WDL_TXN   3.034307e-03  2.288898e-04         2.690810e-03
## AVG_AMT_PER_CHQ_TXN       7.464752e-03 -3.159354e-03         6.148180e-03
## AVG_AMT_PER_NET_TXN       3.569669e-03 -1.368415e-03         2.959954e-03
## AVG_AMT_PER_MOB_TXN       2.961331e-03 -3.690877e-04         2.554043e-03
## FLG_HAS_NOMINEE           7.129803e-06  2.545406e-05         9.351678e-06
## FLG_HAS_OLD_LOAN          4.202514e-05  1.788906e-04         5.857682e-05
## random                   -6.106719e-06 -5.028254e-05        -1.121834e-05
##                          MeanDecreaseGini
## AGE                            12.0126492
## GENDER                          9.1978994
## BALANCE                        36.6731768
## OCCUPATION                     31.7748278
## AGE_BKT                        17.5272337
## SCR                            40.7778470
## HOLDING_PERIOD                 35.5695135
## ACC_TYPE                        3.3228753
## ACC_OP_DATE                    19.3610098
## LEN_OF_RLTN_IN_MNTH            15.3846344
## NO_OF_L_CR_TXNS                36.1436359
## NO_OF_L_DR_TXNS                18.0994543
## TOT_NO_OF_L_TXNS               35.8331748
## NO_OF_BR_CSH_WDL_DR_TXNS        7.6040447
## NO_OF_ATM_DR_TXNS               8.3900361
## NO_OF_NET_DR_TXNS               7.7234390
## NO_OF_MOB_DR_TXNS               2.1392640
## NO_OF_CHQ_DR_TXNS               8.0845459
## FLG_HAS_CC                     18.9783743
## AMT_ATM_DR                     17.0381130
## AMT_BR_CSH_WDL_DR              15.9813258
## AMT_CHQ_DR                     16.5204370
## AMT_NET_DR                     11.7727981
## AMT_MOB_DR                      8.6954668
## AMT_L_DR                       23.0445017
## FLG_HAS_ANY_CHGS                2.1862448
## AMT_OTH_BK_ATM_USG_CHGS         0.3696771
## AMT_MIN_BAL_NMC_CHGS            0.5864845
## NO_OF_IW_CHQ_BNC_TXNS           1.5312316
## NO_OF_OW_CHQ_BNC_TXNS           1.7435830
## AVG_AMT_PER_ATM_TXN            18.8887459
## AVG_AMT_PER_CSH_WDL_TXN        15.6072288
## AVG_AMT_PER_CHQ_TXN            15.0963810
## AVG_AMT_PER_NET_TXN            10.9166934
## AVG_AMT_PER_MOB_TXN            10.4919516
## FLG_HAS_NOMINEE                 0.7164978
## FLG_HAS_OLD_LOAN                1.2479892
## random                          7.8303132

Plot of significant variables based on MeanDecreaseAccuracy and MeanDecreaseGini

varImpPlot(tRF,
           sort = T,
           main="Variable Importance",
           n.var=38)

Scoring syntax

RFDF.dev$predict.class <- predict(tRF, RFDF.dev, type="class")
RFDF.dev$predict.score <- predict(tRF, RFDF.dev, type="prob")
head(RFDF.dev)
##   CUST_ID TARGET AGE GENDER    BALANCE OCCUPATION AGE_BKT SCR
## 2   C6877      0  47      M  287489.04        SAL   46-50 324
## 3  C19922      0  40      M   18216.88   SELF-EMP   36-40 603
## 4   C8183      0  53      M   71720.48        SAL     >50 196
## 5  C12123      0  36      M 1671622.89       PROF   36-40 167
## 6    C257      0  42      F  521685.69       PROF   41-45 493
## 7   C8300      0  30      M  204458.60       PROF   26-30 479
##   HOLDING_PERIOD ACC_TYPE ACC_OP_DATE LEN_OF_RLTN_IN_MNTH NO_OF_L_CR_TXNS
## 2             28       SA  2008-10-11                 104               8
## 3              2       SA  2012-04-26                  61              10
## 4             13       CA  2008-07-04                 107              36
## 5             24       SA  2001-12-29                 185              20
## 6             26       SA  2001-06-07                 192               5
## 7             14       SA  2002-08-25                 177               6
##   NO_OF_L_DR_TXNS TOT_NO_OF_L_TXNS NO_OF_BR_CSH_WDL_DR_TXNS
## 2               2               10                        0
## 3               5               15                        1
## 4              14               50                        4
## 5               1               21                        1
## 6               2                7                        1
## 7               6               12                        0
##   NO_OF_ATM_DR_TXNS NO_OF_NET_DR_TXNS NO_OF_MOB_DR_TXNS NO_OF_CHQ_DR_TXNS
## 2                 1                 1                 0                 0
## 3                 1                 1                 0                 2
## 4                 2                 3                 1                 4
## 5                 0                 0                 0                 0
## 6                 1                 0                 0                 0
## 7                 1                 1                 0                 4
##   FLG_HAS_CC AMT_ATM_DR AMT_BR_CSH_WDL_DR AMT_CHQ_DR AMT_NET_DR AMT_MOB_DR
## 2          0       6600                 0          0     799813          0
## 3          0      11200            561120      49320     997570          0
## 4          0      26100            673590      60780     741506      71388
## 5          0          0            808480          0          0          0
## 6          1      18500            379310          0          0          0
## 7          0       6200                 0      10580     770065          0
##   AMT_L_DR FLG_HAS_ANY_CHGS AMT_OTH_BK_ATM_USG_CHGS AMT_MIN_BAL_NMC_CHGS
## 2   806413                1                       0                    0
## 3  1619210                1                       0                    0
## 4  1573364                0                       0                    0
## 5   808480                0                       0                    0
## 6   397810                0                       0                    0
## 7   786845                1                       0                    0
##   NO_OF_IW_CHQ_BNC_TXNS NO_OF_OW_CHQ_BNC_TXNS AVG_AMT_PER_ATM_TXN
## 2                     0                     0                6600
## 3                     0                     1               11200
## 4                     0                     0               13050
## 5                     0                     0                   0
## 6                     0                     0               18500
## 7                     0                     0                6200
##   AVG_AMT_PER_CSH_WDL_TXN AVG_AMT_PER_CHQ_TXN AVG_AMT_PER_NET_TXN
## 2                     0.0                   0            799813.0
## 3                561120.0               24660            997570.0
## 4                168397.5               15195            247168.7
## 5                808480.0                   0                 0.0
## 6                379310.0                   0                 0.0
## 7                     0.0                2645            770065.0
##   AVG_AMT_PER_MOB_TXN FLG_HAS_NOMINEE FLG_HAS_OLD_LOAN      random
## 2                   0               1                0 0.000111373
## 3                   0               1                1 0.000119954
## 4               71388               1                0 0.000136825
## 5                   0               1                0 0.000173976
## 6                   0               1                1 0.000405840
## 7                   0               0                1 0.000499109
##   predict.class predict.score.0 predict.score.1
## 2             0           0.994           0.006
## 3             0           0.922           0.078
## 4             0           0.994           0.006
## 5             0           0.986           0.014
## 6             0           0.994           0.006
## 7             0           0.994           0.006

Model Performance Measures

Rank ordering

decile <- function(x){
  deciles <- vector(length=10)
  for (i in seq(0.1,1,.1)){
    deciles[i*10] <- quantile(x, i, na.rm=T)
  }
      return (
    ifelse(x<deciles[1], 1,
           ifelse(x<deciles[2], 2,
                  ifelse(x<deciles[3], 3,
                         ifelse(x<deciles[4], 4,
                                ifelse(x<deciles[5], 5,
                                       ifelse(x<deciles[6], 6,
                                              ifelse(x<deciles[7], 7,
                                                     ifelse(x<deciles[8], 8,
                                                            ifelse(x<deciles[9], 9, 10
                                                            ))))))))))
}


RFDF.dev$deciles <- decile(RFDF.dev$predict.score[,2])
library(data.table)
tmp_DT = data.table(RFDF.dev)
rank <- tmp_DT[, list(
  cnt = length(TARGET), 
  cnt_resp = sum(TARGET), 
  cnt_non_resp = sum(TARGET == 0)), 
  by=deciles][order(-deciles)]
rank$rrate <- round (rank$cnt_resp / rank$cnt,2);
rank$cum_resp <- cumsum(rank$cnt_resp)
rank$cum_non_resp <- cumsum(rank$cnt_non_resp)
rank$cum_rel_resp <- round(rank$cum_resp / sum(rank$cnt_resp),2);
rank$cum_rel_non_resp <- round(rank$cum_non_resp / sum(rank$cnt_non_resp),2);
rank$ks <- abs(rank$cum_rel_resp - rank$cum_rel_non_resp);
library(scales)
rank$rrate <- percent(rank$rrate)
rank$cum_rel_resp <- percent(rank$cum_rel_resp)
rank$cum_rel_non_resp <- percent(rank$cum_rel_non_resp)
rank
##    deciles  cnt cnt_resp cnt_non_resp rrate cum_resp cum_non_resp
## 1:      10 1410      986          424   70%      986          424
## 2:       9 1478      480          998   32%     1466         1422
## 3:       8 1423      151         1272   11%     1617         2694
## 4:       7 1366       65         1301    5%     1682         3995
## 5:       6 1799       17         1782    1%     1699         5777
## 6:       5 1372       10         1362    1%     1709         7139
## 7:       4 2183        4         2179    0%     1713         9318
## 8:       3 2969        4         2965    0%     1717        12283
##    cum_rel_resp cum_rel_non_resp   ks
## 1:          57%               3% 0.54
## 2:          85%              12% 0.73
## 3:          94%              22% 0.72
## 4:          98%              33% 0.65
## 5:          99%              47% 0.52
## 6:         100%              58% 0.42
## 7:         100%              76% 0.24
## 8:         100%             100% 0.00

ROC Curve

library(ROCR)
## Warning: package 'ROCR' was built under R version 3.4.2
## Loading required package: gplots
## Warning: package 'gplots' was built under R version 3.4.2
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
pred <- prediction(RFDF.dev$predict.score[,2],RFDF.dev$TARGET)
perf <- performance(pred, "tpr", "fpr")
plot(perf)

KS Value

KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])
KS
## [1] 0.7452088

Gini coefficient

library(ineq)
gini = ineq(RFDF.dev$predict.score[,2], type="Gini")
gini
## [1] 0.7583828

Validation of model using holdout sample

Rank ordering

RFDF.holdout$predict.class <- predict(tRF, RFDF.holdout, type="class")
RFDF.holdout$predict.score <- predict(tRF, RFDF.holdout, type="prob")

RFDF.holdout$deciles <- decile(RFDF.holdout$predict.score[,2])

tmp_DT = data.table(RFDF.holdout)
h_rank <- tmp_DT[, list(
  cnt = length(TARGET), 
  cnt_resp = sum(TARGET), 
  cnt_non_resp = sum(TARGET == 0)) , 
  by=deciles][order(-deciles)]
h_rank$rrate <- round (h_rank$cnt_resp / h_rank$cnt,2);
h_rank$cum_resp <- cumsum(h_rank$cnt_resp)
h_rank$cum_non_resp <- cumsum(h_rank$cnt_non_resp)
h_rank$cum_rel_resp <- round(h_rank$cum_resp / sum(h_rank$cnt_resp),2);
h_rank$cum_rel_non_resp <- round(h_rank$cum_non_resp / sum(h_rank$cnt_non_resp),2);
h_rank$ks <- abs(h_rank$cum_rel_resp - h_rank$cum_rel_non_resp);


library(scales)
h_rank$rrate <- percent(h_rank$rrate)
h_rank$cum_rel_resp <- percent(h_rank$cum_rel_resp)
h_rank$cum_rel_non_resp <- percent(h_rank$cum_rel_non_resp)

h_rank
##    deciles  cnt cnt_resp cnt_non_resp rrate cum_resp cum_non_resp
## 1:      10  600      355          245   59%      355          245
## 2:       9  656      206          450   31%      561          695
## 3:       8  617       84          533   14%      645         1228
## 4:       7  554       58          496   10%      703         1724
## 5:       6  675       28          647    4%      731         2371
## 6:       5 1055       41         1014    4%      772         3385
## 7:       4  855        9          846    1%      781         4231
## 8:       2  988       14          974    1%      795         5205
##    cum_rel_resp cum_rel_non_resp   ks
## 1:          45%               5% 0.40
## 2:          71%              13% 0.58
## 3:          81%              24% 0.57
## 4:          88%              33% 0.55
## 5:          92%              46% 0.46
## 6:          97%              65% 0.32
## 7:          98%              81% 0.17
## 8:         100%             100% 0.00

ROC Curve

library(ROCR)
pred <- prediction(RFDF.holdout$predict.score[,2],RFDF.holdout$TARGET)
perf <- performance(pred, "tpr", "fpr")
plot(perf)

KS value

KS <- max(attr(perf, 'y.values')[[1]]-attr(perf, 'x.values')[[1]])
KS
## [1] 0.5860439

Gini coefficient

library(ineq)
gini = ineq(RFDF.holdout$predict.score[,2], type="Gini")
gini
## [1] 0.7193523