- Creating, organizing, and sharing data
- Data cleaning
- Data manipulation
- Data analysis
- A simple case of data table
2018/3/10
| Gender | Pregnant (= No) | Preganent (= Yes) |
|---|---|---|
| Female | 3 | 1 |
| Male | 2 | 0 |
| Gender | Pregnant | Frequency |
|---|---|---|
| Female | No | 3 |
| Male | No | 2 |
| Female | Yes | 1 |
| Male | Yes | 0 |
| Gender | Pregnant |
|---|---|
| Female | Yes |
| Female | No |
| Female | No |
| Female | No |
| Male | No |
| Male | No |
| Gender | Pregnant |
|---|---|
| 1 | 1 |
| 1 | 0 |
| 1 | 0 |
| 1 | 0 |
| 0 | 0 |
| 0 | 0 |
Gender: Female = 1, Male = 0
Pregnant: No = 0, Yes = 1
| ID | Gender | Pregnant |
|---|---|---|
| 1 | 1 | 1 |
| 2 | 1 | 0 |
| 3 | 1 | 0 |
| 4 | 1 | 0 |
| 5 | 0 | 0 |
| 6 | 0 | 0 |
ID: Subject Index
Gender: Female = 1, Male = 0
Pregnant: No = 0, Yes = 1
dta <- data.frame(Gender = rep(c(1, 0), c(4, 2)),
Pregnant = c(1, rep(0, 5)))
dta
Gender Pregnant 1 1 1 2 1 0 3 1 0 4 1 0 5 0 0 6 0 0
dta <- within(dta, {
Gender <- ifelse(Gender == 0, "Male", "Female")
Pregnant <- ifelse(Pregnant == 0, "No", "Yes")
} )
dta
Gender Pregnant 1 Female Yes 2 Female No 3 Female No 4 Female No 5 Male No 6 Male No
table(dta)
Pregnant Gender No Yes Female 3 1 Male 2 0
with(dta, table(Pregnant, Gender))
Gender
Pregnant Female Male
No 3 2
Yes 1 0
t(table(dta))
Gender
Pregnant Female Male
No 3 2
Yes 1 0
table(t(dta))
Female Male No Yes
4 2 5 1
data.frame(table(dta))
Gender Pregnant Freq 1 Female No 3 2 Male No 2 3 Female Yes 1 4 Male Yes 0
plot(table(dta), main = "")
mosaicplot(table(dta), main = "")
tdta <- table(dta) as.vector(tdta)
[1] 3 2 1 0
names(tdta) <- c("Female_No", "Male_No", "Female_Yes", "Male_Yes")
pie(tdta, radius = 1, col = gray(seq(1, .4, length = 4)))
pie(tdta, radius = 1, col = gray(seq(.8, .2, length = 4))) symbols(0, 0, circles = .5, bg = "white", add = T)
dotchart(table(dta))
dotchart(prop.table(table(dta), 1))