Base model update - independence in prevalence over space and time; species functional groups; sampling sites within watersheds.

\[y_{i,j,k,l} \sim \text{Bin}(p_{i,j,k,l}, n_{i,j,k,l}) \\ p_{i,j,k,l} = Se_l * \lambda_{i,j,k,l} + (1 - Sp_l) * (1 - \lambda_{i,j,k,l}) \\ \lambda_{i,j,k,l} \sim \text{Beta}(\alpha_{\lambda_{m,i,j,l}}, \beta_{\lambda_{m,i,j,l}}) \\ Se_l \sim \text{Beta}(\alpha_{Se}, \beta_{Se}) \\ Sp_l \sim \text{Beta}(\alpha_{Sp}, \beta_{Sp}) \\ \]

Base model - independence in prevalence over space or time; mallards only; watershed-level data

\[y_{i,j,k} \sim \text{Bin}(p_{i,j,k}, n_{i,j,k}) \\ p_{i,j,k} = Se * \pi_{i,j,k} + (1 - Sp) * (1 - \pi_{i,j,k}) \\ \pi_{i,j,k} \sim \text{Beta}(\alpha_{\pi}, \beta_{\pi})\\ Se \sim \text{Beta}(\alpha_{Se}, \beta_{Se})\\ Sp \sim \text{Beta}(\alpha_{Sp}, \beta_{Sp}) \]

iCAR model - independence in prevalence over time, autocorrelation in space; mallards only; watershed-level data

\[y_{i,j,k} \sim \text{Bin}(p_{i,j,k}, n_{i,j,k}) \\ p_{i,j,k} = Se * \pi_{i,j,k} + (1 - Sp) * (1 - \pi_{i,j,k}) \\ \text{logit}(\pi_{i,j,k}) = \mu_{\pi,i,j} + \alpha_k \\ \alpha_k \sim \text{MVN}(0, \tau * I * (I - W))\\ \mu_{\pi,i,j} \sim \text{Cauchy}(0, 1/2.5)\\ \tau \sim \text{Gamma}(0.1, 0.1)\\ Se \sim \text{Beta}(\alpha_{Se}, \beta_{Se})\\ Sp \sim \text{Beta}(\alpha_{Sp}, \beta_{Sp}) \]