Approach 2: gendered models

FOR WOMEN

  1. Voluntariness
## 
## Call:
## lm(formula = voluntary ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8565 -0.1858  0.0131  0.2744  0.5758 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.29330    0.07323   -4.01  6.7e-05 ***
## careertypeHT  0.07110    0.03514    2.02   0.0433 *  
## careertypeIN  0.14857    0.02675    5.55  3.6e-08 ***
## careertypeMX  0.00136    0.03260    0.04   0.9667    
## careertypeUN -0.09489    0.04854   -1.95   0.0509 .  
## age           0.00327    0.00106    3.09   0.0021 ** 
## education     0.00163    0.00344    0.47   0.6349    
## sector1      -0.04092    0.05736   -0.71   0.4758    
## sector2      -0.18778    0.20951   -0.90   0.3703    
## sector3      -0.02882    0.03327   -0.87   0.3867    
## sector4      -0.12570    0.12285   -1.02   0.3065    
## sector5      -0.10266    0.10105   -1.02   0.3099    
## sector6      -0.02811    0.03212   -0.88   0.3816    
## sector7       0.05939    0.05626    1.06   0.2914    
## sector8       0.11645    0.06466    1.80   0.0720 .  
## sector9       0.06453    0.05140    1.26   0.2096    
## sector10      0.08945    0.12275    0.73   0.4664    
## sector11      0.08545    0.04254    2.01   0.0449 *  
## sector12      0.02269    0.03848    0.59   0.5556    
## sector13      0.05441    0.03364    1.62   0.1061    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.317 on 950 degrees of freedom
##   (316 observations deleted due to missingness)
## Multiple R-squared: 0.0811,  Adjusted R-squared: 0.0628 
## F-statistic: 4.41 on 19 and 950 DF,  p-value: 1.2e-09
  1. Age - included as control = SKIP

SUBJECTIVE CAREER SUCCESS INDICATORS

  1. Career satisfaction
## 
## Call:
## lm(formula = satisfaction ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.529 -0.372  0.019  0.550  1.443 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    -0.65365    0.26041   -2.51   0.0123 *  
## careertypeHT                   -0.18762    0.11221   -1.67   0.0949 .  
## careertypeIN                   -0.36446    0.06759   -5.39  9.1e-08 ***
## careertypeMX                   -0.09916    0.08510   -1.17   0.2443    
## careertypeUN                   -0.53020    0.11640   -4.56  6.0e-06 ***
## age                             0.01015    0.00285    3.55   0.0004 ***
## education                       0.00183    0.00912    0.20   0.8412    
## sectorManufacturing            -0.12387    0.14560   -0.85   0.3951    
## sectorUtilities                 0.37872    0.40479    0.94   0.3498    
## sectorConstruction              0.16721    0.31665    0.53   0.5976    
## sectorWholesale&retail          0.06929    0.14565    0.48   0.6344    
## sectorHoreca                   -0.14845    0.20340   -0.73   0.4657    
## sectorTransport&communication   0.04006    0.21632    0.19   0.8531    
## sectorFinancial intermediation  0.30065    0.18802    1.60   0.1102    
## sectorRestate, rent&business    0.03107    0.36302    0.09   0.9318    
## sectorPublic administration     0.04967    0.17492    0.28   0.7765    
## sectorEducation                 0.25085    0.15463    1.62   0.1051    
## sectorHealth and social work   -0.02082    0.14979   -0.14   0.8895    
## sectorOther                    -0.15477    0.15697   -0.99   0.3244    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.752 on 834 degrees of freedom
##   (433 observations deleted due to missingness)
## Multiple R-squared: 0.123,   Adjusted R-squared: 0.104 
## F-statistic: 6.47 on 18 and 834 DF,  p-value: 3.09e-15
  1. Career disappointment
## 
## Call:
## lm(formula = disappointment ~ careertype + age + education + 
##     sector, data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7807 -0.8231 -0.0461  0.5790  2.2632 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     0.721984   0.303473    2.38  0.01758 *  
## careertypeHT                    0.215121   0.130760    1.65  0.10031    
## careertypeIN                    0.013593   0.078769    0.17  0.86304    
## careertypeMX                   -0.016270   0.099173   -0.16  0.86973    
## careertypeUN                    0.303212   0.135644    2.24  0.02566 *  
## age                            -0.011580   0.003327   -3.48  0.00053 ***
## education                       0.001856   0.010629    0.17  0.86140    
## sectorManufacturing            -0.044767   0.169673   -0.26  0.79196    
## sectorUtilities                 0.362324   0.471735    0.77  0.44266    
## sectorConstruction              0.553545   0.369010    1.50  0.13397    
## sectorWholesale&retail         -0.000116   0.169732    0.00  0.99945    
## sectorHoreca                    0.301097   0.237032    1.27  0.20434    
## sectorTransport&communication  -0.067525   0.252093   -0.27  0.78888    
## sectorFinancial intermediation  0.061761   0.219110    0.28  0.77811    
## sectorRestate, rent&business    0.140095   0.423048    0.33  0.74061    
## sectorPublic administration    -0.035728   0.203841   -0.18  0.86091    
## sectorEducation                 0.074070   0.180200    0.41  0.68115    
## sectorHealth and social work    0.123387   0.174565    0.71  0.47987    
## sectorOther                     0.305439   0.182928    1.67  0.09535 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.877 on 834 degrees of freedom
##   (433 observations deleted due to missingness)
## Multiple R-squared: 0.0472,  Adjusted R-squared: 0.0266 
## F-statistic: 2.29 on 18 and 834 DF,  p-value: 0.00168
  1. Career achievements
## 
## Call:
## lm(formula = achievements ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.218 -0.260 -0.088  0.614  1.240 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                    -0.27372    0.22358   -1.22   0.2212   
## careertypeHT                   -0.12822    0.09634   -1.33   0.1836   
## careertypeIN                   -0.10052    0.05804   -1.73   0.0836 . 
## careertypeMX                   -0.00698    0.07307   -0.10   0.9239   
## careertypeUN                   -0.31842    0.09994   -3.19   0.0015 **
## age                             0.00383    0.00245    1.56   0.1190   
## education                       0.00573    0.00783    0.73   0.4648   
## sectorManufacturing            -0.08054    0.12500   -0.64   0.5195   
## sectorUtilities                 0.14028    0.34754    0.40   0.6866   
## sectorConstruction              0.27063    0.27186    1.00   0.3198   
## sectorWholesale&retail          0.02491    0.12505    0.20   0.8422   
## sectorHoreca                   -0.15195    0.17463   -0.87   0.3845   
## sectorTransport&communication   0.12184    0.18572    0.66   0.5120   
## sectorFinancial intermediation  0.16407    0.16143    1.02   0.3097   
## sectorRestate, rent&business   -0.46136    0.31167   -1.48   0.1392   
## sectorPublic administration     0.10319    0.15018    0.69   0.4922   
## sectorEducation                 0.16438    0.13281    1.24   0.2162   
## sectorHealth and social work   -0.05544    0.12861   -0.43   0.6665   
## sectorOther                    -0.06626    0.13477   -0.49   0.6231   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.646 on 833 degrees of freedom
##   (434 observations deleted due to missingness)
## Multiple R-squared: 0.0569,  Adjusted R-squared: 0.0366 
## F-statistic: 2.79 on 18 and 833 DF,  p-value: 9.61e-05
  1. Career sacrifices
## 
## Call:
## lm(formula = sacrifices ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.458 -0.294 -0.051  0.214  2.153 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     0.10693    0.26273    0.41  0.68412    
## careertypeHT                    0.05319    0.11317    0.47  0.63844    
## careertypeIN                   -0.24359    0.06817   -3.57  0.00037 ***
## careertypeMX                    0.01091    0.08583    0.13  0.89892    
## careertypeUN                   -0.16612    0.11739   -1.42  0.15741    
## age                            -0.00309    0.00288   -1.07  0.28418    
## education                       0.00357    0.00921    0.39  0.69869    
## sectorManufacturing             0.10671    0.14682    0.73  0.46754    
## sectorUtilities                -0.10583    0.40819   -0.26  0.79550    
## sectorConstruction              0.84177    0.31931    2.64  0.00854 ** 
## sectorWholesale&retail          0.09342    0.14687    0.64  0.52489    
## sectorHoreca                    0.39208    0.20511    1.91  0.05627 .  
## sectorTransport&communication  -0.02974    0.21814   -0.14  0.89160    
## sectorFinancial intermediation  0.14548    0.18960    0.77  0.44313    
## sectorRestate, rent&business   -0.73789    0.36606   -2.02  0.04415 *  
## sectorPublic administration     0.05591    0.17638    0.32  0.75133    
## sectorEducation                 0.21959    0.15607    1.41  0.15982    
## sectorHealth and social work    0.10346    0.15105    0.68  0.49359    
## sectorOther                     0.06767    0.15829    0.43  0.66913    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.759 on 833 degrees of freedom
##   (434 observations deleted due to missingness)
## Multiple R-squared: 0.0579,  Adjusted R-squared: 0.0375 
## F-statistic: 2.84 on 18 and 833 DF,  p-value: 7.2e-05
  1. Health suffered due to career
## 
## Call:
## lm(formula = healthsuffered ~ careertype + age + education + 
##     sector, data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8386 -0.6915 -0.0735  0.5463  2.3867 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     0.98470    0.30665    3.21   0.0014 ** 
## careertypeHT                    0.12155    0.13213    0.92   0.3579    
## careertypeIN                   -0.36993    0.07959   -4.65  3.9e-06 ***
## careertypeMX                   -0.01425    0.10021   -0.14   0.8869    
## careertypeUN                    0.00452    0.13706    0.03   0.9737    
## age                            -0.01526    0.00336   -4.54  6.5e-06 ***
## education                      -0.02227    0.01074   -2.07   0.0384 *  
## sectorManufacturing             0.15597    0.17145    0.91   0.3632    
## sectorUtilities                 0.07130    0.47667    0.15   0.8811    
## sectorConstruction              0.09907    0.37287    0.27   0.7905    
## sectorWholesale&retail          0.14137    0.17151    0.82   0.4100    
## sectorHoreca                    0.56427    0.23951    2.36   0.0187 *  
## sectorTransport&communication  -0.05629    0.25473   -0.22   0.8252    
## sectorFinancial intermediation -0.21276    0.22140   -0.96   0.3368    
## sectorRestate, rent&business   -0.11806    0.42747   -0.28   0.7825    
## sectorPublic administration     0.08735    0.20597    0.42   0.6716    
## sectorEducation                 0.26342    0.18208    1.45   0.1484    
## sectorHealth and social work    0.24226    0.17639    1.37   0.1700    
## sectorOther                     0.11967    0.18484    0.65   0.5175    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.886 on 834 degrees of freedom
##   (433 observations deleted due to missingness)
## Multiple R-squared: 0.0856,  Adjusted R-squared: 0.0659 
## F-statistic: 4.34 on 18 and 834 DF,  p-value: 5.44e-09

MARITAL INDICATORS

  1. Number of marriages
## 
## Call:
## lm(formula = marriages ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2234 -0.1210 -0.0570  0.0198  2.8101 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.35630    0.08588    4.15  3.6e-05 ***
## careertypeHT  0.09155    0.04352    2.10    0.036 *  
## careertypeIN  0.05350    0.03236    1.65    0.099 .  
## careertypeMX  0.05135    0.04025    1.28    0.202    
## careertypeUN -0.03856    0.05657   -0.68    0.496    
## age          -0.00574    0.00124   -4.62  4.3e-06 ***
## education    -0.01123    0.00408   -2.75    0.006 ** 
## sector1      -0.00917    0.06704   -0.14    0.891    
## sector2       0.41938    0.26859    1.56    0.119    
## sector3      -0.02055    0.04153   -0.49    0.621    
## sector4      -0.24847    0.14609   -1.70    0.089 .  
## sector5       0.03739    0.12324    0.30    0.762    
## sector6       0.01069    0.03994    0.27    0.789    
## sector7       0.06611    0.07178    0.92    0.357    
## sector8      -0.10029    0.08263   -1.21    0.225    
## sector9      -0.11472    0.06118   -1.88    0.061 .  
## sector10     -0.10342    0.14591   -0.71    0.479    
## sector11      0.03227    0.05206    0.62    0.535    
## sector12     -0.02944    0.04276   -0.69    0.491    
## sector13      0.01943    0.04005    0.49    0.628    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.407 on 1129 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared: 0.0446,  Adjusted R-squared: 0.0285 
## F-statistic: 2.77 on 19 and 1129 DF,  p-value: 6.96e-05
  1. Number of children
## 
## Call:
## lm(formula = children ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.756 -0.873 -0.138  0.584  9.705 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.52798    0.28437   -5.37  9.6e-08 ***
## careertypeHT -0.21874    0.14858   -1.47   0.1413    
## careertypeIN  0.42990    0.10694    4.02  6.3e-05 ***
## careertypeMX  0.03235    0.13606    0.24   0.8121    
## careertypeUN  0.52890    0.18550    2.85   0.0044 ** 
## age           0.01988    0.00416    4.78  2.0e-06 ***
## education    -0.00590    0.01351   -0.44   0.6624    
## sector1       0.49613    0.22041    2.25   0.0246 *  
## sector2      -0.04997    0.83949   -0.06   0.9525    
## sector3       0.00400    0.13668    0.03   0.9767    
## sector4      -0.39229    0.53750   -0.73   0.4657    
## sector5       0.20588    0.43045    0.48   0.6325    
## sector6       0.00539    0.13264    0.04   0.9676    
## sector7       0.13465    0.23186    0.58   0.5615    
## sector8      -0.20739    0.26977   -0.77   0.4422    
## sector9      -0.00780    0.20876   -0.04   0.9702    
## sector10     -0.48846    0.49177   -0.99   0.3208    
## sector11     -0.07251    0.17402   -0.42   0.6770    
## sector12      0.17833    0.14158    1.26   0.2081    
## sector13      0.06832    0.13275    0.51   0.6069    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.27 on 1000 degrees of freedom
##   (266 observations deleted due to missingness)
## Multiple R-squared: 0.0857,  Adjusted R-squared: 0.0683 
## F-statistic: 4.93 on 19 and 1000 DF,  p-value: 2.88e-11
  1. Number of divorces
## 
## Call:
## lm(formula = divorces ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.617 -0.240 -0.148 -0.041  3.744 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.48186    0.09392    5.13  3.4e-07 ***
## careertypeHT  0.18252    0.04760    3.83  0.00013 ***
## careertypeIN -0.01026    0.03539   -0.29  0.77191    
## careertypeMX  0.02795    0.04402    0.64  0.52556    
## careertypeUN  0.08852    0.06188    1.43  0.15281    
## age          -0.00747    0.00136   -5.50  4.7e-08 ***
## education    -0.00490    0.00446   -1.10  0.27235    
## sector1      -0.01052    0.07332   -0.14  0.88590    
## sector2       0.26936    0.29376    0.92  0.35937    
## sector3      -0.04826    0.04542   -1.06  0.28828    
## sector4      -0.14119    0.15978   -0.88  0.37706    
## sector5       0.06767    0.13479    0.50  0.61574    
## sector6      -0.01073    0.04368   -0.25  0.80601    
## sector7       0.05747    0.07850    0.73  0.46427    
## sector8      -0.10504    0.09037   -1.16  0.24536    
## sector9      -0.09197    0.06691   -1.37  0.16955    
## sector10     -0.23998    0.15958   -1.50  0.13289    
## sector11      0.13334    0.05694    2.34  0.01937 *  
## sector12     -0.00948    0.04677   -0.20  0.83937    
## sector13      0.03251    0.04381    0.74  0.45822    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.445 on 1129 degrees of freedom
##   (137 observations deleted due to missingness)
## Multiple R-squared: 0.0701,  Adjusted R-squared: 0.0545 
## F-statistic: 4.48 on 19 and 1129 DF,  p-value: 6.32e-10

FINANCIALS

  1. Wage Main Job
## 
## Call:
## lm(formula = WageMain ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -1237   -219    -40    227   6304 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     1989.99     433.06    4.60  6.4e-06 ***
## careertypeHT                     427.60     136.54    3.13  0.00191 ** 
## careertypeIN                    -481.83     179.04   -2.69  0.00753 ** 
## careertypeMX                    -242.62     119.15   -2.04  0.04261 *  
## careertypeUN                    -187.09     188.30   -0.99  0.32124    
## age                              -14.82       3.87   -3.82  0.00016 ***
## education                         28.87      10.80    2.67  0.00792 ** 
## sectorManufacturing              122.88     307.07    0.40  0.68933    
## sectorUtilities                  225.30     457.96    0.49  0.62312    
## sectorConstruction               -46.83     453.03   -0.10  0.91774    
## sectorWholesale&retail            52.02     306.59    0.17  0.86539    
## sectorHoreca                     -38.90     339.60   -0.11  0.90888    
## sectorTransport&communication    235.97     348.19    0.68  0.49850    
## sectorFinancial intermediation   330.41     337.65    0.98  0.32860    
## sectorRestate, rent&business    -276.87     456.45   -0.61  0.54461    
## sectorPublic administration      242.00     326.13    0.74  0.45867    
## sectorEducation                  114.24     312.36    0.37  0.71484    
## sectorHealth and social work     283.69     310.74    0.91  0.36201    
## sectorOther                      162.15     311.63    0.52  0.60323    
## divorces                          24.44      80.22    0.30  0.76088    
## children                         -22.28      27.73   -0.80  0.42244    
## activecareer                      12.95       5.82    2.22  0.02688 *  
## voluntary                         70.15     106.50    0.66  0.51059    
## satisfaction                      84.03      43.23    1.94  0.05289 .  
## disappointment                    44.26      40.14    1.10  0.27110    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 576 on 294 degrees of freedom
##   (967 observations deleted due to missingness)
## Multiple R-squared: 0.478,   Adjusted R-squared: 0.435 
## F-statistic: 11.2 on 24 and 294 DF,  p-value: <2e-16
  1. Last Salary
## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.845 -1.530 -0.276  1.574  6.487 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     5.64694    1.74593    3.23   0.0014 ** 
## careertypeHT                    1.08364    0.54452    1.99   0.0475 *  
## careertypeIN                   -1.62877    0.71654   -2.27   0.0237 *  
## careertypeMX                    0.76364    0.53353    1.43   0.1534    
## careertypeUN                    1.00727    0.77478    1.30   0.1946    
## age                            -0.08283    0.01949   -4.25  2.9e-05 ***
## education                       0.08098    0.04617    1.75   0.0805 .  
## sectorManufacturing            -0.92499    1.02887   -0.90   0.3694    
## sectorUtilities                -2.72295    1.73231   -1.57   0.1171    
## sectorConstruction             -1.99381    2.62600   -0.76   0.4483    
## sectorWholesale&retail         -0.33203    1.02323   -0.32   0.7458    
## sectorHoreca                   -0.87611    1.25662   -0.70   0.4862    
## sectorTransport&communication   0.56047    1.23953    0.45   0.6515    
## sectorFinancial intermediation -0.60574    1.17022   -0.52   0.6051    
## sectorRestate, rent&business   -1.21103    1.96464   -0.62   0.5381    
## sectorPublic administration     0.49201    1.12600    0.44   0.6625    
## sectorEducation                 0.70524    1.06945    0.66   0.5101    
## sectorHealth and social work    0.98653    1.03104    0.96   0.3394    
## sectorOther                     0.67579    1.06766    0.63   0.5272    
## divorces                        0.77919    0.37882    2.06   0.0406 *  
## children                        0.04332    0.10674    0.41   0.6851    
## activecareer                   -0.00552    0.02352   -0.23   0.8144    
## voluntary                      -0.13065    0.45855   -0.28   0.7759    
## satisfaction                    0.06574    0.19278    0.34   0.7333    
## disappointment                 -0.06559    0.18189   -0.36   0.7186    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.35 on 294 degrees of freedom
##   (967 observations deleted due to missingness)
## Multiple R-squared: 0.363,   Adjusted R-squared: 0.311 
## F-statistic: 6.99 on 24 and 294 DF,  p-value: <2e-16
  1. Home ownership
## Error: contrasts can be applied only to factors with 2 or more levels
## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.845 -1.530 -0.276  1.574  6.487 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     5.64694    1.74593    3.23   0.0014 ** 
## careertypeHT                    1.08364    0.54452    1.99   0.0475 *  
## careertypeIN                   -1.62877    0.71654   -2.27   0.0237 *  
## careertypeMX                    0.76364    0.53353    1.43   0.1534    
## careertypeUN                    1.00727    0.77478    1.30   0.1946    
## age                            -0.08283    0.01949   -4.25  2.9e-05 ***
## education                       0.08098    0.04617    1.75   0.0805 .  
## sectorManufacturing            -0.92499    1.02887   -0.90   0.3694    
## sectorUtilities                -2.72295    1.73231   -1.57   0.1171    
## sectorConstruction             -1.99381    2.62600   -0.76   0.4483    
## sectorWholesale&retail         -0.33203    1.02323   -0.32   0.7458    
## sectorHoreca                   -0.87611    1.25662   -0.70   0.4862    
## sectorTransport&communication   0.56047    1.23953    0.45   0.6515    
## sectorFinancial intermediation -0.60574    1.17022   -0.52   0.6051    
## sectorRestate, rent&business   -1.21103    1.96464   -0.62   0.5381    
## sectorPublic administration     0.49201    1.12600    0.44   0.6625    
## sectorEducation                 0.70524    1.06945    0.66   0.5101    
## sectorHealth and social work    0.98653    1.03104    0.96   0.3394    
## sectorOther                     0.67579    1.06766    0.63   0.5272    
## divorces                        0.77919    0.37882    2.06   0.0406 *  
## children                        0.04332    0.10674    0.41   0.6851    
## activecareer                   -0.00552    0.02352   -0.23   0.8144    
## voluntary                      -0.13065    0.45855   -0.28   0.7759    
## satisfaction                    0.06574    0.19278    0.34   0.7333    
## disappointment                 -0.06559    0.18189   -0.36   0.7186    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.35 on 294 degrees of freedom
##   (967 observations deleted due to missingness)
## Multiple R-squared: 0.363,   Adjusted R-squared: 0.311 
## F-statistic: 6.99 on 24 and 294 DF,  p-value: <2e-16

CAREER ACTIVITY

  1. Retirement age
## 
## Call:
## lm(formula = AgePension ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.396  -1.294   0.316   1.654  13.092 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    58.026314   1.826210   31.77  < 2e-16 ***
## careertypeHT                    3.217309   0.688795    4.67  4.0e-06 ***
## careertypeIN                    9.959827   0.848062   11.74  < 2e-16 ***
## careertypeMX                    5.827389   0.629690    9.25  < 2e-16 ***
## careertypeUN                    6.744486   0.916509    7.36  8.7e-13 ***
## age                            -0.000802   0.021773   -0.04   0.9706    
## education                       0.038257   0.055991    0.68   0.4948    
## sectorManufacturing            -0.717992   0.809952   -0.89   0.3758    
## sectorUtilities                -2.008362   2.195960   -0.91   0.3609    
## sectorConstruction             -8.157382   3.630410   -2.25   0.0251 *  
## sectorWholesale&retail          0.677701   0.819259    0.83   0.4086    
## sectorHoreca                    0.157827   1.246709    0.13   0.8993    
## sectorTransport&communication  -2.094359   1.288397   -1.63   0.1047    
## sectorFinancial intermediation  0.345842   1.148284    0.30   0.7634    
## sectorRestate, rent&business    2.111644   2.591266    0.81   0.4156    
## sectorPublic administration    -1.845928   0.997253   -1.85   0.0648 .  
## sectorEducation                -0.490214   0.904606   -0.54   0.5881    
## sectorHealth and social work    0.221072   0.853415    0.26   0.7957    
## sectorOther                     0.827802   0.883057    0.94   0.3490    
## divorces                       -0.703874   0.445994   -1.58   0.1152    
## children                        0.290574   0.113695    2.56   0.0109 *  
## activecareer                    0.188476   0.026923    7.00  9.2e-12 ***
## voluntary                      -0.904990   0.529629   -1.71   0.0882 .  
## satisfaction                   -0.613071   0.232170   -2.64   0.0086 ** 
## disappointment                 -0.273351   0.203952   -1.34   0.1808    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.46 on 455 degrees of freedom
##   (806 observations deleted due to missingness)
## Multiple R-squared: 0.404,   Adjusted R-squared: 0.372 
## F-statistic: 12.8 on 24 and 455 DF,  p-value: <2e-16
  1. Career active years
## 
## Call:
## lm(formula = activecareer ~ careertype + age + education + sector + 
##     divorces + children + voluntary + satisfaction + disappointment, 
##     data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.364  -3.602  -0.168   3.675  23.676 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      2.2643     2.3644    0.96    0.339    
## careertypeHT                     0.0463     1.0472    0.04    0.965    
## careertypeIN                   -26.9416     0.6417  -41.98  < 2e-16 ***
## careertypeMX                   -10.8169     0.7721  -14.01  < 2e-16 ***
## careertypeUN                   -20.5021     1.0496  -19.53  < 2e-16 ***
## age                              0.0449     0.0262    1.72    0.087 .  
## education                       -0.1378     0.0821   -1.68    0.094 .  
## sectorManufacturing             -2.3676     1.3157   -1.80    0.072 .  
## sectorUtilities                  1.0984     3.7476    0.29    0.770    
## sectorConstruction              -4.4612     3.0091   -1.48    0.139    
## sectorWholesale&retail          -1.9652     1.3227   -1.49    0.138    
## sectorHoreca                    -1.6484     1.7651   -0.93    0.351    
## sectorTransport&communication   -1.5626     1.8603   -0.84    0.401    
## sectorFinancial intermediation  -3.0477     1.7150   -1.78    0.076 .  
## sectorRestate, rent&business    -6.0741     3.2698   -1.86    0.064 .  
## sectorPublic administration     -2.1987     1.5931   -1.38    0.168    
## sectorEducation                 -2.3028     1.4708   -1.57    0.118    
## sectorHealth and social work    -2.2463     1.3709   -1.64    0.102    
## sectorOther                     -0.0256     1.4132   -0.02    0.986    
## divorces                        -0.6828     0.5353   -1.28    0.203    
## children                        -0.8962     0.1733   -5.17  3.1e-07 ***
## voluntary                        1.3918     0.7592    1.83    0.067 .  
## satisfaction                     0.3661     0.3269    1.12    0.263    
## disappointment                  -0.0715     0.2882   -0.25    0.804    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 6 on 646 degrees of freedom
##   (616 observations deleted due to missingness)
## Multiple R-squared: 0.81,    Adjusted R-squared: 0.803 
## F-statistic:  120 on 23 and 646 DF,  p-value: <2e-16
  1. Career length
## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.845 -1.530 -0.276  1.574  6.487 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     5.64694    1.74593    3.23   0.0014 ** 
## careertypeHT                    1.08364    0.54452    1.99   0.0475 *  
## careertypeIN                   -1.62877    0.71654   -2.27   0.0237 *  
## careertypeMX                    0.76364    0.53353    1.43   0.1534    
## careertypeUN                    1.00727    0.77478    1.30   0.1946    
## age                            -0.08283    0.01949   -4.25  2.9e-05 ***
## education                       0.08098    0.04617    1.75   0.0805 .  
## sectorManufacturing            -0.92499    1.02887   -0.90   0.3694    
## sectorUtilities                -2.72295    1.73231   -1.57   0.1171    
## sectorConstruction             -1.99381    2.62600   -0.76   0.4483    
## sectorWholesale&retail         -0.33203    1.02323   -0.32   0.7458    
## sectorHoreca                   -0.87611    1.25662   -0.70   0.4862    
## sectorTransport&communication   0.56047    1.23953    0.45   0.6515    
## sectorFinancial intermediation -0.60574    1.17022   -0.52   0.6051    
## sectorRestate, rent&business   -1.21103    1.96464   -0.62   0.5381    
## sectorPublic administration     0.49201    1.12600    0.44   0.6625    
## sectorEducation                 0.70524    1.06945    0.66   0.5101    
## sectorHealth and social work    0.98653    1.03104    0.96   0.3394    
## sectorOther                     0.67579    1.06766    0.63   0.5272    
## divorces                        0.77919    0.37882    2.06   0.0406 *  
## children                        0.04332    0.10674    0.41   0.6851    
## activecareer                   -0.00552    0.02352   -0.23   0.8144    
## voluntary                      -0.13065    0.45855   -0.28   0.7759    
## satisfaction                    0.06574    0.19278    0.34   0.7333    
## disappointment                 -0.06559    0.18189   -0.36   0.7186    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.35 on 294 degrees of freedom
##   (967 observations deleted due to missingness)
## Multiple R-squared: 0.363,   Adjusted R-squared: 0.311 
## F-statistic: 6.99 on 24 and 294 DF,  p-value: <2e-16

Experimenting with health

  1. Health general (W2)
## 
## Call:
## lm(formula = w2health ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1198 -0.6147  0.0343  0.7092  2.4528 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     3.97216    0.39147   10.15   <2e-16 ***
## careertypeHT                   -0.23991    0.17326   -1.38   0.1666    
## careertypeIN                   -0.37773    0.20501   -1.84   0.0659 .  
## careertypeMX                   -0.16969    0.14587   -1.16   0.2451    
## careertypeUN                   -0.28682    0.21902   -1.31   0.1908    
## age                             0.01322    0.00434    3.05   0.0024 ** 
## education                      -0.05498    0.01361   -4.04    6e-05 ***
## sectorManufacturing             0.28214    0.21823    1.29   0.1965    
## sectorUtilities                 0.37146    0.62008    0.60   0.5493    
## sectorConstruction              0.07641    0.49869    0.15   0.8783    
## sectorWholesale&retail          0.12978    0.21921    0.59   0.5540    
## sectorHoreca                    0.05996    0.29223    0.21   0.8375    
## sectorTransport&communication  -0.02494    0.30795   -0.08   0.9355    
## sectorFinancial intermediation  0.56349    0.28443    1.98   0.0480 *  
## sectorRestate, rent&business    0.59462    0.54242    1.10   0.2734    
## sectorPublic administration     0.03660    0.26396    0.14   0.8898    
## sectorEducation                 0.25466    0.24380    1.04   0.2966    
## sectorHealth and social work    0.13757    0.22728    0.61   0.5452    
## sectorOther                     0.24419    0.23381    1.04   0.2967    
## divorces                        0.25507    0.08867    2.88   0.0042 ** 
## children                       -0.02356    0.02926   -0.81   0.4210    
## activecareer                   -0.01232    0.00651   -1.89   0.0588 .  
## voluntary                      -0.02125    0.12593   -0.17   0.8661    
## satisfaction                   -0.12176    0.05413   -2.25   0.0248 *  
## disappointment                  0.06595    0.04769    1.38   0.1672    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.992 on 645 degrees of freedom
##   (616 observations deleted due to missingness)
## Multiple R-squared: 0.0915,  Adjusted R-squared: 0.0577 
## F-statistic: 2.71 on 24 and 645 DF,  p-value: 2.41e-05
  1. Long-term ilness (W2)
## 
## Call:
## lm(formula = w2ilness ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -2.43e-16 -1.76e-17  2.00e-19  1.35e-17  2.71e-15 
## 
## Coefficients:
##                                 Estimate Std. Error   t value Pr(>|t|)    
## (Intercept)                     3.00e+00   9.28e-17  3.23e+16  < 2e-16 ***
## careertypeHT                   -5.31e-18   4.67e-17 -1.10e-01  0.90949    
## careertypeIN                    3.93e-17   5.49e-17  7.20e-01  0.47467    
## careertypeMX                    7.99e-18   3.91e-17  2.00e-01  0.83838    
## careertypeUN                    2.89e-17   5.90e-17  4.90e-01  0.62427    
## age                            -4.01e-20   1.11e-18 -4.00e-02  0.97122    
## education                       5.51e-19   3.46e-18  1.60e-01  0.87355    
## sectorManufacturing            -5.48e-18   4.94e-17 -1.10e-01  0.91170    
## sectorUtilities                 2.20e-17   1.81e-16  1.20e-01  0.90331    
## sectorConstruction              5.32e-19   1.32e-16  0.00e+00  0.99677    
## sectorWholesale&retail         -2.79e-18   4.86e-17 -6.00e-02  0.95434    
## sectorHoreca                   -7.45e-18   7.32e-17 -1.00e-01  0.91900    
## sectorTransport&communication  -5.54e-18   7.00e-17 -8.00e-02  0.93691    
## sectorFinancial intermediation -3.70e-18   6.17e-17 -6.00e-02  0.95223    
## sectorRestate, rent&business   -2.53e-18   1.85e-16 -1.00e-02  0.98911    
## sectorPublic administration     2.16e-16   6.34e-17  3.41e+00  0.00074 ***
## sectorEducation                 9.99e-18   5.59e-17  1.80e-01  0.85841    
## sectorHealth and social work   -5.49e-19   5.03e-17 -1.00e-02  0.99130    
## sectorOther                    -4.64e-18   5.18e-17 -9.00e-02  0.92872    
## divorces                       -1.27e-17   2.06e-17 -6.20e-01  0.53712    
## children                        1.58e-18   7.06e-18  2.20e-01  0.82298    
## activecareer                    2.36e-19   1.76e-18  1.30e-01  0.89348    
## voluntary                       1.18e-17   3.29e-17  3.60e-01  0.71880    
## satisfaction                    6.84e-19   1.43e-17  5.00e-02  0.96199    
## disappointment                 -4.72e-19   1.20e-17 -4.00e-02  0.96857    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.69e-16 on 279 degrees of freedom
##   (982 observations deleted due to missingness)
## Multiple R-squared: 0.491,   Adjusted R-squared: 0.447 
## F-statistic: 11.2 on 24 and 279 DF,  p-value: <2e-16
  1. Problems limiting work (W2)
## 
## Call:
## lm(formula = w2worklim ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "female")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9210 -0.0084  0.0047  0.0177  0.0798 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     3.089408   0.065535   47.14   <2e-16 ***
## careertypeHT                    0.006185   0.036749    0.17    0.867    
## careertypeIN                    0.023945   0.039313    0.61    0.544    
## careertypeMX                    0.018678   0.025316    0.74    0.462    
## careertypeUN                    0.042678   0.041145    1.04    0.302    
## age                            -0.001443   0.000774   -1.86    0.065 .  
## education                      -0.004101   0.002558   -1.60    0.111    
## sectorManufacturing            -0.022775   0.043168   -0.53    0.599    
## sectorWholesale&retail         -0.000798   0.044141   -0.02    0.986    
## sectorHoreca                   -0.008569   0.053301   -0.16    0.873    
## sectorTransport&communication  -0.009176   0.059030   -0.16    0.877    
## sectorFinancial intermediation  0.019998   0.055101    0.36    0.717    
## sectorRestate, rent&business   -0.072881   0.102501   -0.71    0.478    
## sectorPublic administration     0.006474   0.047008    0.14    0.891    
## sectorEducation                 0.024686   0.048923    0.50    0.615    
## sectorHealth and social work    0.011439   0.043865    0.26    0.795    
## sectorOther                     0.004408   0.043947    0.10    0.920    
## divorces                       -0.004325   0.012911   -0.34    0.738    
## children                        0.002336   0.004901    0.48    0.634    
## activecareer                    0.001072   0.001174    0.91    0.363    
## voluntary                       0.016647   0.024567    0.68    0.499    
## satisfaction                    0.013674   0.010000    1.37    0.174    
## disappointment                  0.006684   0.008071    0.83    0.409    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.0835 on 132 degrees of freedom
##   (1131 observations deleted due to missingness)
## Multiple R-squared: 0.073,   Adjusted R-squared: -0.0815 
## F-statistic: 0.473 on 22 and 132 DF,  p-value: 0.978