Sometimes crime increases around sports venues on game days1. It happens in Cleveland, too2.
| Venue | GameDay | charges |
|---|---|---|
| FE | 0 | 43 |
| FE | 1 | 70 |
| GP | 0 | 43 |
| GP | 1 | 85 |
Frequency of crime by three categories on game days and non-game days in Cleveland,Ohio.
knitr::opts_chunk$set(message = FALSE, warning=FALSE,
echo=FALSE, eval=TRUE, fig.path='Figs/')
if (!require("pacman")) install.packages("pacman")
pacman::p_load(plyr, dplyr, xtable, ggplot2, knitr)
clev.d <- read.csv("C:/Users/devan.mcgranahan/GoogleDrive/Teaching/Classes/Intro to R/course materials/class session materials/data/AllClevelandCrimeData.csv")
# Calculate total charges per venue, game day/non-game day
charge.tot <- ddply(clev.d, .(Venue, GameDay),
summarize, charges=length(GameDay))
charge.tot
kable(charge.tot, caption='Contingency table of total charges on game days and non-game days, by venue.')
gd.charges <- subset(clev.d, ChargeType %in% c("VIOLENT",
"RESISTING ARREST",
"PROPERTY"))
# Stop the shouting!
gd.charges$ChargeType <- tolower(gd.charges$ChargeType)
ggplot(gd.charges) + theme_bw(14) +
geom_bar(aes(x=reorder(ChargeType,
ChargeType,
function(x)-length(x)),
fill=factor(GameDay)),
stat="count",
position = "dodge") +
labs(x="Charge type",
y="Frequency of incidents") +
theme(axis.text.x=element_text(angle=45, hjust=1),
legend.position=c(0.75,0.8),
legend.key.width=unit(0.25, "in")) +
scale_fill_brewer(palette="Set1",
name="Game day?",
labels=c("No","Yes"))
sessionInfo();
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] bindrcpp_0.2 knitr_1.18 ggplot2_2.2.1 xtable_1.8-2 dplyr_0.7.4
## [6] plyr_1.8.4 pacman_0.4.6
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.15 bindr_0.1 magrittr_1.5
## [4] munsell_0.4.3 colorspace_1.3-2 R6_2.2.2
## [7] rlang_0.1.6 highr_0.6 stringr_1.2.0
## [10] tools_3.4.3 grid_3.4.3 gtable_0.2.0
## [13] htmltools_0.3.6 lazyeval_0.2.1 yaml_2.1.16
## [16] rprojroot_1.3-2 digest_0.6.14 assertthat_0.2.0
## [19] tibble_1.4.1 RColorBrewer_1.1-2 glue_1.2.0
## [22] evaluate_0.10.1 rmarkdown_1.8 labeling_0.3
## [25] stringi_1.1.6 compiler_3.4.3 pillar_1.1.0
## [28] scales_0.5.0 backports_1.1.2 jsonlite_1.5
## [31] pkgconfig_2.0.1
1. Kurland, J., Johnson, S.D. and Tilley, N. 2014. Offenses around stadiums: A natural experiment on crime attraction and generation. Journal of Research in Crime and Delinquency 51:5–28.
2. Mayntz, D. and Toft, S. 2001. Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia 127:207–213.