Approach 2: gendered models

FOR MEN

  1. Voluntariness
## 
## Call:
## lm(formula = voluntary ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7478 -0.1849  0.0306  0.2789  0.4957 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -0.03862    0.07300   -0.53   0.5969   
## careertypeHT  0.01858    0.04178    0.44   0.6567   
## careertypeIM -0.12002    0.04369   -2.75   0.0061 **
## age           0.00102    0.00104    0.98   0.3280   
## education     0.00454    0.00274    1.66   0.0973 . 
## sector1      -0.08796    0.05286   -1.66   0.0965 . 
## sector2      -0.06378    0.07052   -0.90   0.3660   
## sector3      -0.04785    0.02534   -1.89   0.0593 . 
## sector4       0.04000    0.05432    0.74   0.4617   
## sector5      -0.04381    0.03301   -1.33   0.1848   
## sector6      -0.05370    0.03245   -1.66   0.0983 . 
## sector7      -0.00226    0.07482   -0.03   0.9760   
## sector8       0.01124    0.03584    0.31   0.7540   
## sector9       0.08290    0.05348    1.55   0.1215   
## sector10      0.22322    0.15862    1.41   0.1597   
## sector11      0.01847    0.02963    0.62   0.5331   
## sector12      0.01272    0.03680    0.35   0.7296   
## sector13     -0.05162    0.04773   -1.08   0.2798   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.294 on 881 degrees of freedom
##   (324 observations deleted due to missingness)
## Multiple R-squared: 0.0378,  Adjusted R-squared: 0.0192 
## F-statistic: 2.04 on 17 and 881 DF,  p-value: 0.00782
  1. Age - included as control = SKIP

SUBJECTIVE CAREER SUCCESS INDICATORS

  1. Career satisfaction
## 
## Call:
## lm(formula = satisfaction ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.355 -0.397 -0.169  0.568  1.349 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.60115    0.20112   -2.99  0.00289 ** 
## careertypeHT  0.18230    0.10154    1.80  0.07300 .  
## careertypeIM -0.45560    0.09851   -4.63  4.4e-06 ***
## age           0.00958    0.00269    3.56  0.00039 ***
## education     0.01403    0.00651    2.16  0.03146 *  
## sector1       0.22950    0.11192    2.05  0.04064 *  
## sector2      -0.20321    0.17423   -1.17  0.24383    
## sector3      -0.04081    0.06815   -0.60  0.54951    
## sector4       0.32429    0.13046    2.49  0.01314 *  
## sector5       0.06129    0.08446    0.73  0.46830    
## sector6       0.10394    0.08468    1.23  0.22003    
## sector7      -0.18618    0.19480   -0.96  0.33949    
## sector8      -0.03770    0.09835   -0.38  0.70154    
## sector9       0.12249    0.13239    0.93  0.35514    
## sector10     -0.60475    0.60131   -1.01  0.31486    
## sector11      0.10887    0.08057    1.35  0.17703    
## sector12      0.03194    0.08862    0.36  0.71861    
## sector13     -0.02928    0.12001   -0.24  0.80729    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.638 on 780 degrees of freedom
##   (425 observations deleted due to missingness)
## Multiple R-squared: 0.0907,  Adjusted R-squared: 0.0708 
## F-statistic: 4.57 on 17 and 780 DF,  p-value: 3.12e-09
  1. Career disappointment
## 
## Call:
## lm(formula = disappointment ~ careertype + age + education + 
##     sector, data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8119 -0.8084 -0.0161  0.4471  2.4736 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.09211    0.28256    3.87  0.00012 ***
## careertypeHT  0.14427    0.14270    1.01  0.31232    
## careertypeIM  0.52376    0.13843    3.78  0.00017 ***
## age          -0.01464    0.00378   -3.88  0.00012 ***
## education     0.01384    0.00915    1.51  0.13087    
## sector1      -0.17495    0.15727   -1.11  0.26630    
## sector2       0.10407    0.24484    0.43  0.67092    
## sector3      -0.17236    0.09577   -1.80  0.07230 .  
## sector4      -0.25352    0.18334   -1.38  0.16713    
## sector5      -0.07548    0.11869   -0.64  0.52501    
## sector6       0.13470    0.11900    1.13  0.25804    
## sector7       0.21942    0.27376    0.80  0.42309    
## sector8      -0.23186    0.13821   -1.68  0.09381 .  
## sector9       0.07722    0.18605    0.42  0.67820    
## sector10      0.72490    0.84503    0.86  0.39124    
## sector11     -0.04716    0.11294   -0.42  0.67640    
## sector12     -0.27458    0.12454   -2.20  0.02776 *  
## sector13     -0.02954    0.16866   -0.18  0.86099    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.897 on 781 degrees of freedom
##   (424 observations deleted due to missingness)
## Multiple R-squared: 0.0674,  Adjusted R-squared: 0.0471 
## F-statistic: 3.32 on 17 and 781 DF,  p-value: 6.72e-06
  1. Career achievements
## 
## Call:
## lm(formula = achievements ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.313 -0.317 -0.207  0.625  1.263 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.38867    0.19574   -1.99   0.0474 *  
## careertypeHT  0.10906    0.09886    1.10   0.2703    
## careertypeIM -0.31957    0.09589   -3.33   0.0009 ***
## age           0.00599    0.00262    2.29   0.0223 *  
## education     0.00880    0.00634    1.39   0.1652    
## sector1       0.24414    0.10895    2.24   0.0253 *  
## sector2      -0.38278    0.16961   -2.26   0.0243 *  
## sector3      -0.01568    0.06635   -0.24   0.8132    
## sector4       0.18894    0.12700    1.49   0.1372    
## sector5       0.03962    0.08223    0.48   0.6300    
## sector6       0.01492    0.08244    0.18   0.8565    
## sector7       0.07167    0.18964    0.38   0.7056    
## sector8       0.06081    0.09574    0.64   0.5255    
## sector9      -0.02619    0.12888   -0.20   0.8390    
## sector10     -0.42724    0.58537   -0.73   0.4657    
## sector11     -0.03140    0.07824   -0.40   0.6883    
## sector12      0.15282    0.08663    1.76   0.0781 .  
## sector13      0.06026    0.11683    0.52   0.6061    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.621 on 780 degrees of freedom
##   (425 observations deleted due to missingness)
## Multiple R-squared: 0.0553,  Adjusted R-squared: 0.0347 
## F-statistic: 2.68 on 17 and 780 DF,  p-value: 0.000264
  1. Career sacrifices
## 
## Call:
## lm(formula = sacrifices ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.733 -0.378 -0.173  0.694  1.950 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.70438    0.25905    2.72   0.0067 **
## careertypeHT -0.02767    0.13067   -0.21   0.8323   
## careertypeIM -0.19673    0.12675   -1.55   0.1211   
## age          -0.00762    0.00346   -2.20   0.0281 * 
## education     0.01464    0.00841    1.74   0.0823 . 
## sector1      -0.17696    0.14401   -1.23   0.2195   
## sector2      -0.21538    0.22419   -0.96   0.3370   
## sector3      -0.09309    0.08770   -1.06   0.2888   
## sector4      -0.04808    0.16788   -0.29   0.7746   
## sector5      -0.09217    0.10868   -0.85   0.3966   
## sector6       0.25902    0.10897    2.38   0.0177 * 
## sector7       0.29176    0.25067    1.16   0.2448   
## sector8      -0.14755    0.12655   -1.17   0.2440   
## sector9       0.12362    0.17036    0.73   0.4683   
## sector10      0.63025    0.77377    0.81   0.4156   
## sector11     -0.12492    0.10343   -1.21   0.2275   
## sector12     -0.11357    0.11408   -1.00   0.3198   
## sector13      0.00514    0.15445    0.03   0.9735   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.821 on 780 degrees of freedom
##   (425 observations deleted due to missingness)
## Multiple R-squared: 0.0418,  Adjusted R-squared: 0.0209 
## F-statistic:    2 on 17 and 780 DF,  p-value: 0.00932
  1. Health suffered due to career
## 
## Call:
## lm(formula = healthsuffered ~ careertype + age + education + 
##     sector, data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7669 -0.8804 -0.0896  0.7470  2.1561 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.83555    0.28407    2.94   0.0034 **
## careertypeHT  0.16021    0.14335    1.12   0.2641   
## careertypeIM  0.34033    0.13905    2.45   0.0146 * 
## age          -0.01164    0.00380   -3.06   0.0023 **
## education    -0.01286    0.00919   -1.40   0.1620   
## sector1       0.04129    0.15798    0.26   0.7939   
## sector2       0.34924    0.24593    1.42   0.1560   
## sector3       0.01915    0.09628    0.20   0.8424   
## sector4      -0.09397    0.18415   -0.51   0.6100   
## sector5      -0.01594    0.11922   -0.13   0.8937   
## sector6       0.19514    0.11954    1.63   0.1030   
## sector7       0.03141    0.27498    0.11   0.9091   
## sector8      -0.11765    0.13882   -0.85   0.3970   
## sector9      -0.12394    0.18688   -0.66   0.5074   
## sector10     -0.13502    0.84879   -0.16   0.8737   
## sector11      0.05560    0.11344    0.49   0.6242   
## sector12     -0.00729    0.12509   -0.06   0.9535   
## sector13     -0.04910    0.16941   -0.29   0.7720   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.901 on 780 degrees of freedom
##   (425 observations deleted due to missingness)
## Multiple R-squared: 0.0374,  Adjusted R-squared: 0.0164 
## F-statistic: 1.78 on 17 and 780 DF,  p-value: 0.0261

MARITAL INDICATORS

  1. Number of marriages
## 
## Call:
## lm(formula = marriages ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1511 -0.0975 -0.0542 -0.0147  2.8691 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   9.07e-02   9.35e-02    0.97   0.3326   
## careertypeHT  1.54e-01   5.95e-02    2.59   0.0097 **
## careertypeIM  2.55e-02   6.21e-02    0.41   0.6807   
## age          -1.61e-03   1.34e-03   -1.21   0.2278   
## education     6.75e-06   3.58e-03    0.00   0.9985   
## sector1      -9.94e-02   5.96e-02   -1.67   0.0955 . 
## sector2       1.14e-01   9.28e-02    1.23   0.2189   
## sector3       7.90e-03   3.28e-02    0.24   0.8095   
## sector4      -2.32e-02   7.35e-02   -0.32   0.7524   
## sector5       1.24e-02   4.25e-02    0.29   0.7702   
## sector6       3.80e-02   4.21e-02    0.90   0.3679   
## sector7       7.08e-02   1.07e-01    0.66   0.5075   
## sector8      -1.65e-02   4.88e-02   -0.34   0.7349   
## sector9      -3.28e-02   6.80e-02   -0.48   0.6295   
## sector10     -9.13e-02   1.97e-01   -0.46   0.6429   
## sector11      6.72e-02   3.89e-02    1.72   0.0849 . 
## sector12     -3.36e-02   4.57e-02   -0.73   0.4630   
## sector13      5.98e-02   5.90e-02    1.01   0.3109   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.421 on 1081 degrees of freedom
##   (124 observations deleted due to missingness)
## Multiple R-squared: 0.0199,  Adjusted R-squared: 0.00446 
## F-statistic: 1.29 on 17 and 1081 DF,  p-value: 0.191
  1. Number of children
## 
## Call:
## lm(formula = children ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.343 -0.735 -0.223  0.621  7.220 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.484895   0.297804   -4.99  7.3e-07 ***
## careertypeHT -0.106084   0.183418   -0.58  0.56315    
## careertypeIM -0.473377   0.204640   -2.31  0.02092 *  
## age           0.023293   0.004245    5.49  5.2e-08 ***
## education     0.000319   0.011212    0.03  0.97729    
## sector1       0.353196   0.190289    1.86  0.06375 .  
## sector2      -0.081049   0.292595   -0.28  0.78184    
## sector3      -0.063069   0.102198   -0.62  0.53730    
## sector4      -0.814567   0.237549   -3.43  0.00063 ***
## sector5      -0.023010   0.134205   -0.17  0.86390    
## sector6      -0.256601   0.131230   -1.96  0.05084 .  
## sector7       0.083181   0.311068    0.27  0.78922    
## sector8       0.030686   0.153853    0.20  0.84195    
## sector9      -0.291283   0.213008   -1.37  0.17180    
## sector10      1.252985   0.660254    1.90  0.05804 .  
## sector11     -0.194647   0.121316   -1.60  0.10895    
## sector12      0.065470   0.142862    0.46  0.64686    
## sector13      0.065069   0.185930    0.35  0.72644    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.22 on 946 degrees of freedom
##   (259 observations deleted due to missingness)
## Multiple R-squared: 0.0636,  Adjusted R-squared: 0.0468 
## F-statistic: 3.78 on 17 and 946 DF,  p-value: 3.74e-07
  1. Number of divorces
## 
## Call:
## lm(formula = divorces ~ careertype + age + education + sector, 
##     data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4929 -0.2186 -0.1417 -0.0445  2.6648 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.46666    0.09466    4.93  9.5e-07 ***
## careertypeHT  0.13600    0.06019    2.26   0.0240 *  
## careertypeIM  0.17636    0.06279    2.81   0.0051 ** 
## age          -0.00741    0.00135   -5.48  5.4e-08 ***
## education    -0.00306    0.00363   -0.84   0.3994    
## sector1      -0.09369    0.06028   -1.55   0.1204    
## sector2       0.06001    0.09391    0.64   0.5229    
## sector3      -0.01129    0.03317   -0.34   0.7336    
## sector4      -0.03158    0.07440   -0.42   0.6713    
## sector5       0.00231    0.04303    0.05   0.9573    
## sector6       0.04672    0.04265    1.10   0.2736    
## sector7       0.15984    0.10800    1.48   0.1392    
## sector8      -0.08566    0.04941   -1.73   0.0833 .  
## sector9      -0.02252    0.06884   -0.33   0.7436    
## sector10     -0.21010    0.19923   -1.05   0.2919    
## sector11      0.05751    0.03940    1.46   0.1447    
## sector12      0.02184    0.04624    0.47   0.6369    
## sector13      0.04820    0.05972    0.81   0.4198    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.426 on 1081 degrees of freedom
##   (124 observations deleted due to missingness)
## Multiple R-squared: 0.0541,  Adjusted R-squared: 0.0392 
## F-statistic: 3.63 on 17 and 1081 DF,  p-value: 8.68e-07

FINANCIALS

  1. Wage Main Job
## 
## Call:
## lm(formula = WageMain ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -2134   -510   -128    347  11054 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2778.73     481.86    5.77  1.8e-08 ***
## careertypeHT      24.34     196.96    0.12   0.9017    
## careertypeIM     315.94     260.94    1.21   0.2268    
## age              -18.59       6.93   -2.68   0.0077 ** 
## education        134.41      14.70    9.14  < 2e-16 ***
## sector1         -783.71     303.22   -2.58   0.0101 *  
## sector2          335.34     366.65    0.91   0.3610    
## sector3          239.18     136.99    1.75   0.0817 .  
## sector4          292.69     298.22    0.98   0.3270    
## sector5           63.08     182.14    0.35   0.7293    
## sector6          -68.84     177.60   -0.39   0.6985    
## sector7          189.91     369.00    0.51   0.6071    
## sector8          117.60     206.62    0.57   0.5696    
## sector9          553.38     278.55    1.99   0.0477 *  
## sector10        -870.83     951.19   -0.92   0.3605    
## sector11         189.88     161.13    1.18   0.2394    
## sector12        -154.72     190.76   -0.81   0.4179    
## sector13         183.71     247.45    0.74   0.4583    
## divorces         -41.11     131.37   -0.31   0.7545    
## children         102.91      45.17    2.28   0.0233 *  
## activecareer      28.40       9.78    2.90   0.0039 ** 
## voluntary         10.05     186.07    0.05   0.9570    
## satisfaction     137.56      86.22    1.60   0.1115    
## disappointment  -131.45      61.24   -2.15   0.0325 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 998 on 357 degrees of freedom
##   (842 observations deleted due to missingness)
## Multiple R-squared: 0.274,   Adjusted R-squared: 0.227 
## F-statistic: 5.86 on 23 and 357 DF,  p-value: 1.13e-14
  1. Last Salary
## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.010 -1.953  0.264  2.258  4.624 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     3.534981   1.413819    2.50    0.013 *
## careertypeHT    1.140343   0.530928    2.15    0.032 *
## careertypeIM    0.315633   1.238087    0.25    0.799  
## age            -0.033080   0.019747   -1.68    0.095 .
## education       0.054364   0.042238    1.29    0.199  
## sector1        -1.220342   1.107881   -1.10    0.271  
## sector2         1.425429   0.954688    1.49    0.136  
## sector3        -0.360151   0.381529   -0.94    0.346  
## sector4        -0.557859   0.659568   -0.85    0.398  
## sector5        -0.677256   0.513053   -1.32    0.188  
## sector6        -0.609823   0.511725   -1.19    0.234  
## sector7         1.096620   1.094452    1.00    0.317  
## sector8        -0.946838   0.540102   -1.75    0.080 .
## sector9         0.840879   0.761276    1.10    0.270  
## sector10        0.050332   2.619025    0.02    0.985  
## sector11       -0.286651   0.423763   -0.68    0.499  
## sector12        0.459175   0.491665    0.93    0.351  
## sector13        0.488799   0.740248    0.66    0.509  
## divorces        0.063076   0.394034    0.16    0.873  
## children        0.179535   0.121589    1.48    0.141  
## activecareer   -0.032026   0.032018   -1.00    0.318  
## voluntary      -0.553154   0.504489   -1.10    0.274  
## satisfaction    0.456745   0.252413    1.81    0.071 .
## disappointment  0.000536   0.173326    0.00    0.998  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.75 on 370 degrees of freedom
##   (829 observations deleted due to missingness)
## Multiple R-squared: 0.0964,  Adjusted R-squared: 0.0402 
## F-statistic: 1.72 on 23 and 370 DF,  p-value: 0.0223
  1. Home ownership
## Error: contrasts can be applied only to factors with 2 or more levels
## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.010 -1.953  0.264  2.258  4.624 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     3.534981   1.413819    2.50    0.013 *
## careertypeHT    1.140343   0.530928    2.15    0.032 *
## careertypeIM    0.315633   1.238087    0.25    0.799  
## age            -0.033080   0.019747   -1.68    0.095 .
## education       0.054364   0.042238    1.29    0.199  
## sector1        -1.220342   1.107881   -1.10    0.271  
## sector2         1.425429   0.954688    1.49    0.136  
## sector3        -0.360151   0.381529   -0.94    0.346  
## sector4        -0.557859   0.659568   -0.85    0.398  
## sector5        -0.677256   0.513053   -1.32    0.188  
## sector6        -0.609823   0.511725   -1.19    0.234  
## sector7         1.096620   1.094452    1.00    0.317  
## sector8        -0.946838   0.540102   -1.75    0.080 .
## sector9         0.840879   0.761276    1.10    0.270  
## sector10        0.050332   2.619025    0.02    0.985  
## sector11       -0.286651   0.423763   -0.68    0.499  
## sector12        0.459175   0.491665    0.93    0.351  
## sector13        0.488799   0.740248    0.66    0.509  
## divorces        0.063076   0.394034    0.16    0.873  
## children        0.179535   0.121589    1.48    0.141  
## activecareer   -0.032026   0.032018   -1.00    0.318  
## voluntary      -0.553154   0.504489   -1.10    0.274  
## satisfaction    0.456745   0.252413    1.81    0.071 .
## disappointment  0.000536   0.173326    0.00    0.998  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.75 on 370 degrees of freedom
##   (829 observations deleted due to missingness)
## Multiple R-squared: 0.0964,  Adjusted R-squared: 0.0402 
## F-statistic: 1.72 on 23 and 370 DF,  p-value: 0.0223

CAREER ACTIVITY

  1. Retirement age
## 
## Call:
## lm(formula = AgePension ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.008  -2.159  -0.396   1.669  13.342 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     48.0792     1.5854   30.33  < 2e-16 ***
## careertypeHT    -0.4669     0.6315   -0.74  0.46005    
## careertypeIM    10.2736     1.4115    7.28  1.4e-12 ***
## age              0.0975     0.0217    4.49  9.1e-06 ***
## education        0.3526     0.0490    7.19  2.6e-12 ***
## sector1          1.3412     0.9708    1.38  0.16778    
## sector2         -1.2264     1.1869   -1.03  0.30198    
## sector3         -0.1420     0.4510   -0.31  0.75298    
## sector4         -1.5355     0.8571   -1.79  0.07387 .  
## sector5          0.3793     0.5854    0.65  0.51729    
## sector6          0.5383     0.6128    0.88  0.38014    
## sector7         -0.8111     1.2496   -0.65  0.51663    
## sector8         -0.7123     0.6620   -1.08  0.28245    
## sector9          1.9526     0.9650    2.02  0.04358 *  
## sector10        -1.0875     3.4479   -0.32  0.75260    
## sector11         0.0485     0.5244    0.09  0.92639    
## sector12         0.2730     0.6137    0.44  0.65663    
## sector13         0.9855     0.8689    1.13  0.25726    
## divorces         0.8373     0.4784    1.75  0.08072 .  
## children         0.0683     0.1334    0.51  0.60904    
## activecareer     0.5860     0.0320   18.31  < 2e-16 ***
## voluntary       -1.1531     0.5756   -2.00  0.04569 *  
## satisfaction     0.9018     0.2966    3.04  0.00249 ** 
## disappointment   0.7800     0.2036    3.83  0.00015 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.63 on 472 degrees of freedom
##   (727 observations deleted due to missingness)
## Multiple R-squared: 0.525,   Adjusted R-squared: 0.502 
## F-statistic: 22.7 on 23 and 472 DF,  p-value: <2e-16
  1. Career active years
## Warning: the response appeared on the right-hand side and was dropped
## Warning: problem with term 7 in model.matrix: no columns are assigned
## 
## Call:
## lm(formula = activecareer ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -39.80  -2.93   0.57   3.25  15.88 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -4.6153     2.0306   -2.27  0.02340 *  
## careertypeHT     1.7416     0.9212    1.89  0.05920 .  
## careertypeIM   -13.2833     0.9990  -13.30  < 2e-16 ***
## age              0.1643     0.0277    5.93  5.2e-09 ***
## education       -0.3375     0.0648   -5.21  2.6e-07 ***
## sector1          4.2219     1.2628    3.34  0.00088 ***
## sector2         -0.9950     1.5918   -0.63  0.53216    
## sector3         -1.0374     0.6229   -1.67  0.09637 .  
## sector4          0.2254     1.2321    0.18  0.85490    
## sector5         -0.0192     0.7914   -0.02  0.98064    
## sector6         -0.6844     0.8049   -0.85  0.39550    
## sector7         -1.1859     1.6518   -0.72  0.47309    
## sector8          0.6195     0.9182    0.67  0.50017    
## sector9         -1.1869     1.2775   -0.93  0.35325    
## sector10        -0.8069     5.1002   -0.16  0.87434    
## sector11         0.7368     0.7486    0.98  0.32540    
## sector12        -1.2671     0.8804   -1.44  0.15063    
## sector13        -0.9598     1.1136   -0.86  0.38910    
## divorces        -0.2425     0.5772   -0.42  0.67455    
## children        -0.1608     0.1793   -0.90  0.37013    
## voluntary        2.8191     0.7789    3.62  0.00032 ***
## satisfaction     1.1646     0.3690    3.16  0.00168 ** 
## disappointment   0.1574     0.2604    0.60  0.54578    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 5.38 on 573 degrees of freedom
##   (627 observations deleted due to missingness)
## Multiple R-squared: 0.426,   Adjusted R-squared: 0.404 
## F-statistic: 19.3 on 22 and 573 DF,  p-value: <2e-16
  1. Career length
## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.010 -1.953  0.264  2.258  4.624 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     3.534981   1.413819    2.50    0.013 *
## careertypeHT    1.140343   0.530928    2.15    0.032 *
## careertypeIM    0.315633   1.238087    0.25    0.799  
## age            -0.033080   0.019747   -1.68    0.095 .
## education       0.054364   0.042238    1.29    0.199  
## sector1        -1.220342   1.107881   -1.10    0.271  
## sector2         1.425429   0.954688    1.49    0.136  
## sector3        -0.360151   0.381529   -0.94    0.346  
## sector4        -0.557859   0.659568   -0.85    0.398  
## sector5        -0.677256   0.513053   -1.32    0.188  
## sector6        -0.609823   0.511725   -1.19    0.234  
## sector7         1.096620   1.094452    1.00    0.317  
## sector8        -0.946838   0.540102   -1.75    0.080 .
## sector9         0.840879   0.761276    1.10    0.270  
## sector10        0.050332   2.619025    0.02    0.985  
## sector11       -0.286651   0.423763   -0.68    0.499  
## sector12        0.459175   0.491665    0.93    0.351  
## sector13        0.488799   0.740248    0.66    0.509  
## divorces        0.063076   0.394034    0.16    0.873  
## children        0.179535   0.121589    1.48    0.141  
## activecareer   -0.032026   0.032018   -1.00    0.318  
## voluntary      -0.553154   0.504489   -1.10    0.274  
## satisfaction    0.456745   0.252413    1.81    0.071 .
## disappointment  0.000536   0.173326    0.00    0.998  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.75 on 370 degrees of freedom
##   (829 observations deleted due to missingness)
## Multiple R-squared: 0.0964,  Adjusted R-squared: 0.0402 
## F-statistic: 1.72 on 23 and 370 DF,  p-value: 0.0223

Experimenting with health

  1. Health general (W2)
## 
## Call:
## lm(formula = w2health ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3625 -0.5681  0.0447  0.6360  2.5085 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.716767   0.367071   10.13  < 2e-16 ***
## careertypeHT   -0.065511   0.166302   -0.39  0.69378    
## careertypeIM   -0.252734   0.205647   -1.23  0.21959    
## age             0.019009   0.005137    3.70  0.00024 ***
## education      -0.040628   0.011928   -3.41  0.00071 ***
## sector1         0.140841   0.229456    0.61  0.53959    
## sector2         0.117789   0.286551    0.41  0.68118    
## sector3         0.045234   0.112370    0.40  0.68744    
## sector4        -0.020541   0.221733   -0.09  0.92622    
## sector5         0.083744   0.142420    0.59  0.55676    
## sector6        -0.078044   0.144943   -0.54  0.59048    
## sector7        -0.028639   0.297386   -0.10  0.92331    
## sector8         0.225078   0.165310    1.36  0.17388    
## sector9        -0.066876   0.230076   -0.29  0.77141    
## sector10       -0.869507   0.917842   -0.95  0.34387    
## sector11        0.094630   0.134834    0.70  0.48308    
## sector12        0.140172   0.158714    0.88  0.37752    
## sector13        0.163402   0.200527    0.81  0.41549    
## divorces        0.045432   0.103880    0.44  0.66202    
## children       -0.000122   0.032286    0.00  0.99699    
## activecareer   -0.017597   0.007518   -2.34  0.01959 *  
## voluntary      -0.120351   0.141761   -0.85  0.39625    
## satisfaction   -0.109624   0.066974   -1.64  0.10222    
## disappointment  0.176439   0.046868    3.76  0.00018 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.969 on 572 degrees of freedom
##   (627 observations deleted due to missingness)
## Multiple R-squared: 0.0911,  Adjusted R-squared: 0.0545 
## F-statistic: 2.49 on 23 and 572 DF,  p-value: 0.00016
  1. Long-term ilness (W2)
## 
## Call:
## lm(formula = w2ilness ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -7.68e-15 -5.10e-17  0.00e+00  6.90e-17  7.69e-16 
## 
## Coefficients:
##                                 Estimate Std. Error   t value Pr(>|t|)    
## (Intercept)                     3.00e+00   3.56e-16  8.42e+15   <2e-16 ***
## careertypeHT                    8.58e-17   1.38e-16  6.20e-01    0.535    
## careertypeIM                    1.21e-17   1.59e-16  8.00e-02    0.939    
## age                            -5.73e-18   4.46e-18 -1.28e+00    0.201    
## education                      -3.92e-19   1.06e-17 -4.00e-02    0.970    
## sectorMining                    5.48e-17   3.47e-16  1.60e-01    0.874    
## sectorManufacturing             9.03e-17   2.21e-16  4.10e-01    0.684    
## sectorUtilities                 1.43e-16   2.97e-16  4.80e-01    0.629    
## sectorConstruction              7.97e-17   2.28e-16  3.50e-01    0.727    
## sectorWholesale&retail          5.31e-17   2.33e-16  2.30e-01    0.820    
## sectorHoreca                    5.70e-17   3.22e-16  1.80e-01    0.860    
## sectorTransport&communication   9.41e-17   2.56e-16  3.70e-01    0.713    
## sectorFinancial intermediation  3.91e-18   2.93e-16  1.00e-02    0.989    
## sectorPublic administration     7.18e-17   2.27e-16  3.20e-01    0.752    
## sectorEducation                 5.91e-17   2.46e-16  2.40e-01    0.811    
## sectorHealth and social work    3.03e-17   2.63e-16  1.20e-01    0.908    
## sectorOther                    -6.23e-16   2.55e-16 -2.45e+00    0.015 *  
## divorces                       -8.70e-18   8.57e-17 -1.00e-01    0.919    
## children                        1.63e-17   2.61e-17  6.30e-01    0.532    
## activecareer                   -1.30e-18   5.70e-18 -2.30e-01    0.820    
## voluntary                       1.57e-16   1.31e-16  1.20e+00    0.230    
## satisfaction                    7.83e-17   5.67e-17  1.38e+00    0.169    
## disappointment                  8.01e-17   4.21e-17  1.90e+00    0.058 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 5.38e-16 on 228 degrees of freedom
##   (972 observations deleted due to missingness)
## Multiple R-squared: 0.49,    Adjusted R-squared: 0.441 
## F-statistic: 9.95 on 22 and 228 DF,  p-value: <2e-16
  1. Problems limiting work (W2)
## 
## Call:
## lm(formula = w2worklim ~ careertype + age + education + sector + 
##     divorces + children + activecareer + voluntary + satisfaction + 
##     disappointment, data = mydata, subset = gender == "male")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -6.58e-15 -6.20e-17  3.70e-17  1.66e-16  5.24e-16 
## 
## Coefficients:
##                 Estimate Std. Error   t value Pr(>|t|)    
## (Intercept)     3.00e+00   4.83e-16  6.21e+15   <2e-16 ***
## careertypeHT    1.08e-16   2.60e-16  4.20e-01    0.678    
## careertypeIM   -1.76e-16   2.34e-16 -7.50e-01    0.453    
## age            -8.65e-18   6.97e-18 -1.24e+00    0.217    
## education      -3.03e-17   1.71e-17 -1.77e+00    0.079 .  
## sector1        -8.09e-18   2.92e-16 -3.00e-02    0.978    
## sector2        -1.11e-16   3.31e-16 -3.40e-01    0.737    
## sector3        -1.60e-16   1.40e-16 -1.14e+00    0.255    
## sector4        -8.70e-17   6.11e-16 -1.40e-01    0.887    
## sector5        -1.41e-17   1.75e-16 -8.00e-02    0.936    
## sector6        -4.46e-17   2.01e-16 -2.20e-01    0.825    
## sector7        -1.45e-16   4.40e-16 -3.30e-01    0.743    
## sector8         4.78e-17   2.27e-16  2.10e-01    0.833    
## sector9         8.19e-17   2.93e-16  2.80e-01    0.781    
## sector10        1.87e-16   6.61e-16  2.80e-01    0.777    
## sector11        1.10e-16   1.65e-16  6.60e-01    0.508    
## sector12        1.31e-16   2.62e-16  5.00e-01    0.618    
## sector13       -7.24e-18   2.95e-16 -2.00e-02    0.981    
## divorces       -5.12e-17   1.25e-16 -4.10e-01    0.684    
## children        9.99e-18   4.00e-17  2.50e-01    0.803    
## activecareer   -9.80e-18   9.93e-18 -9.90e-01    0.326    
## voluntary      -2.38e-16   2.25e-16 -1.06e+00    0.292    
## satisfaction   -2.88e-17   8.69e-17 -3.30e-01    0.741    
## disappointment -1.88e-17   7.06e-17 -2.70e-01    0.790    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 6.43e-16 on 116 degrees of freedom
##   (1083 observations deleted due to missingness)
## Multiple R-squared: 0.515,   Adjusted R-squared: 0.419 
## F-statistic: 5.35 on 23 and 116 DF,  p-value: 4.98e-10