CareMod<- glm(count ~ lessca*death, family=poisson(), Caredat) #contains all components of the model
names(CareMod)
## [1] "coefficients" "residuals" "fitted.values"
## [4] "effects" "R" "rank"
## [7] "qr" "family" "linear.predictors"
## [10] "deviance" "aic" "null.deviance"
## [13] "iter" "weights" "prior.weights"
## [16] "df.residual" "df.null" "y"
## [19] "converged" "boundary" "model"
## [22] "call" "formula" "terms"
## [25] "data" "offset" "control"
## [28] "method" "contrasts" "xlevels"
CareMod$family
##
## Family: poisson
## Link function: log
CareMod$contrasts
## $lessca
## [1] "contr.treatment"
##
## $death
## [1] "contr.treatment"
S1<- summary(CareMod)
S1<- summary(CareMod)
S1$coefficients
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.7557422 0.05625440 102.316312 0.000000e+00
## lesscay 0.1658362 0.07645601 2.169041 3.007959e-02
## deathy -3.9639827 0.41210584 -9.618846 6.657360e-22
## lesscay:deathy 1.0381366 0.47171197 2.200785 2.775125e-02
Change the contrats so that the output crrespond to the SAS output
options(contrasts = c("contr.SAS", "contr.poly"))
options(contrasts = c("contr.SAS", "contr.poly"))
CareMod2<- glm(count ~ lessca*death, family=poisson(),data=Caredat)
CareMod2$family
##
## Family: poisson
## Link function: log
CareMod2$contrasts
## $lessca
## [1] "contr.SAS"
##
## $death
## [1] "contr.SAS"
S2<- summary(CareMod2)
S2$coefficients
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.995732 0.2236068 13.397322 6.268444e-41
## lesscan -1.203973 0.4654747 -2.586549 9.694252e-03
## deathn 2.925846 0.2295233 12.747488 3.219516e-37
## lesscan:deathn 1.038137 0.4717120 2.200785 2.775125e-02
l<-sapply(Caredat, function(x) length(levels(x)))
###lessca death count
### 2 2 0
T <- array(0, l[-3], lapply(Caredat[, -3], levels))
T[data.matrix(Caredat[,-3])] <- Caredat$count
LNf <- loglm(~lessca*death,T);LNf0<-loglm(~1:2,T)
LL2 <- glm(count ~ lessca + death, family=poisson(),Caredat)
summary(LL2) # Get the coefficients
##
## Call:
## glm(formula = count ~ lessca + death, family = poisson(), data = Caredat)
##
## Deviance Residuals:
## 1 2 3 4
## 1.4234 -1.8425 -0.2941 0.3231
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.65962 0.19901 13.364 < 2e-16 ***
## lesscan -0.19926 0.07517 -2.651 0.00803 **
## deathn 3.27714 0.19978 16.404 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 780.494 on 3 degrees of freedom
## Residual deviance: 5.612 on 1 degrees of freedom
## AIC: 35.465
##
## Number of Fisher Scoring iterations: 4
# Estimate Std. Error z value Pr(>|z|)
#(Intercept) 2.6596236 0.19901495 13.363939 9.822600e-41
#lesscan -0.1992581 0.07516726 -2.650863 8.028651e-03
#deathn 3.2771447 0.19978089 16.403695 1.799518e-60
LNi <- loglm(~lessca+death,T);LNi0<-loglm(~1+2,T)
LNi
## Call:
## loglm(formula = ~lessca + death, data = T)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 5.611979 1 0.01783811
## Pearson 5.255464 1 0.02187797