knitr::opts_chunk$set(
    echo = TRUE,
    message = TRUE,
    warning = TRUE
)

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

## Warning: package 'lme4' was built under R version 3.3.2
## Loading required package: Matrix
## Loading required package: nlme
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:lme4':
## 
##     lmList
## Loading required package: MASS
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.12
## Current Matrix version is 1.2.7.1
## Please re-install 'TMB' from source or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
##   neighid schid  attain   p7vrq  p7read  dadocc dadunemp daded momed male
## 1     675     0  0.7350  21.972  12.134   2.316        0     0     0    1
## 2     647     0  0.2641  -7.028 -12.866  16.196        0     0     1    0
## 3     650     0 -1.3276 -11.028 -31.866 -23.454        1     0     0    1
## 4     650     0  0.7350   3.972   3.134   2.316        0     0     0    1
## 5     648     0 -0.1325  -2.028   0.134  -3.454        0     0     0    0
## 6     648     0  0.5610  -5.028  -0.866  -3.454        0     0     0    0
##   deprive dummy
## 1  -0.182     1
## 2   0.206     1
## 3   0.534     1
## 4   0.534     1
## 5   0.188     1
## 6   0.188     1
### First Model:

first.model <- lmer(attain ~ (1|neighid), data = data, REML = FALSE )

summary (first.model)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: attain ~ (1 | neighid)
##    Data: data
## 
##      AIC      BIC   logLik deviance df.resid 
##   6422.0   6439.2  -3208.0   6416.0     2307 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.33164 -0.65532  0.01513  0.58177  2.96174 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  neighid  (Intercept) 0.2015   0.4489  
##  Residual             0.8044   0.8969  
## Number of obs: 2310, groups:  neighid, 524
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  0.08202    0.02844   2.885
### different ways of caculating the Intra Class Correlation:

ICC <-  (( 0.2024)/ (0.8044+0.2024))

ICC
## [1] 0.201033
icc(first.model)
## 
## Linear mixed model
##  Family: gaussian (identity)
## Formula: attain ~ (1 | neighid)
## 
##   ICC (neighid): 0.200354
RanEffects <- as.data.frame(VarCorr(first.model))
RanEffects
##        grp        var1 var2      vcov     sdcor
## 1  neighid (Intercept) <NA> 0.2015382 0.4489300
## 2 Residual        <NA> <NA> 0.8043706 0.8968671
ICC2<- RanEffects[1,4]/(RanEffects[1,4]+RanEffects[2,4])

ICC2
## [1] 0.2003543
### Second Model:

second.model <- lmer(attain ~ (deprive + 1|neighid), data =  data, REML = FALSE)

summary(second.model)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: attain ~ (deprive + 1 | neighid)
##    Data: data
## 
##      AIC      BIC   logLik deviance df.resid 
##   6390.5   6419.3  -3190.3   6380.5     2305 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.49900 -0.63369  0.01618  0.60013  2.94292 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  neighid  (Intercept) 0.07474  0.2734        
##           deprive     0.36897  0.6074   -0.78
##  Residual             0.80904  0.8995        
## Number of obs: 2310, groups:  neighid, 524
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 0.002947   0.025754   0.114
second.model2 <- lmer(attain ~ deprive + (1|neighid), data =  data, REML = FALSE)

summary(second.model2)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: attain ~ deprive + (1 | neighid)
##    Data: data
## 
##      AIC      BIC   logLik deviance df.resid 
##   6273.6   6296.6  -3132.8   6265.6     2306 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2846 -0.6513  0.0081  0.5848  3.4957 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  neighid  (Intercept) 0.08579  0.2929  
##  Residual             0.81220  0.9012  
## Number of obs: 2310, groups:  neighid, 524
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  0.09995    0.02367   4.222
## deprive     -0.52077    0.03824 -13.619
## 
## Correlation of Fixed Effects:
##         (Intr)
## deprive -0.045
## Third Model:

third.model <- lmer(attain ~ p7vrq+ p7read + dadocc + dadunemp + daded + momed + male + (1|deprive) + (1|neighid), data =  data, REML = FALSE)

summary(third.model)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: attain ~ p7vrq + p7read + dadocc + dadunemp + daded + momed +  
##     male + (1 | deprive) + (1 | neighid)
##    Data: data
## 
##      AIC      BIC   logLik deviance df.resid 
##   4829.9   4893.1  -2403.9   4807.9     2299 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1591 -0.6369 -0.0514  0.5938  3.5332 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  neighid  (Intercept) 1.344e-02 1.159e-01
##  deprive  (Intercept) 7.173e-16 2.678e-08
##  Residual             4.567e-01 6.758e-01
## Number of obs: 2310, groups:  neighid, 524; deprive, 458
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.077383   0.023439   3.301
## p7vrq        0.028441   0.002268  12.540
## p7read       0.026825   0.001753  15.298
## dadocc       0.009311   0.001359   6.852
## dadunemp    -0.143593   0.046878  -3.063
## daded        0.148176   0.041067   3.608
## momed        0.067291   0.037698   1.785
## male        -0.054457   0.028607  -1.904
## 
## Correlation of Fixed Effects:
##          (Intr) p7vrq  p7read dadocc dadnmp daded  momed 
## p7vrq    -0.105                                          
## p7read    0.099 -0.775                                   
## dadocc    0.103 -0.065 -0.095                            
## dadunemp -0.229  0.044  0.026  0.143                     
## daded    -0.210  0.000 -0.066 -0.220 -0.005              
## momed    -0.236 -0.018 -0.025 -0.067  0.004 -0.420       
## male     -0.587  0.085 -0.051  0.010  0.021 -0.006 -0.013
third.model2 <- lmer(attain ~ p7vrq+ p7read + dadocc + dadunemp + daded + momed + male + (deprive |neighid), data =  data, REML = FALSE)

summary(third.model2)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: attain ~ p7vrq + p7read + dadocc + dadunemp + daded + momed +  
##     male + (deprive | neighid)
##    Data: data
## 
##      AIC      BIC   logLik deviance df.resid 
##   4828.8   4897.7  -2402.4   4804.8     2298 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1819 -0.6364 -0.0511  0.5831  3.5409 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  neighid  (Intercept) 0.006719 0.08197       
##           deprive     0.019078 0.13812  -0.92
##  Residual             0.456744 0.67583       
## Number of obs: 2310, groups:  neighid, 524
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.069266   0.023331   2.969
## p7vrq        0.028439   0.002268  12.542
## p7read       0.026653   0.001754  15.198
## dadocc       0.009052   0.001362   6.646
## dadunemp    -0.142212   0.046655  -3.048
## daded        0.145361   0.041163   3.531
## momed        0.066344   0.037743   1.758
## male        -0.054007   0.028573  -1.890
## 
## Correlation of Fixed Effects:
##          (Intr) p7vrq  p7read dadocc dadnmp daded  momed 
## p7vrq    -0.104                                          
## p7read    0.103 -0.775                                   
## dadocc    0.118 -0.064 -0.094                            
## dadunemp -0.232  0.044  0.025  0.141                     
## daded    -0.207 -0.001 -0.063 -0.218 -0.006              
## momed    -0.235 -0.017 -0.026 -0.065  0.004 -0.421       
## male     -0.590  0.084 -0.049  0.010  0.020 -0.006 -0.014
third.model22 <- lmer(attain ~ p7vrq+ p7read + dadocc + dadunemp + daded + momed + male + deprive + (1|neighid), data =  data, REML = FALSE)


summary(third.model22)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: attain ~ p7vrq + p7read + dadocc + dadunemp + daded + momed +  
##     male + deprive + (1 | neighid)
##    Data: data
## 
##      AIC      BIC   logLik deviance df.resid 
##   4797.0   4860.2  -2387.5   4775.0     2299 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9354 -0.6413 -0.0348  0.5706  3.5381 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  neighid  (Intercept) 0.006228 0.07892 
##  Residual             0.456631 0.67574 
## Number of obs: 2310, groups:  neighid, 524
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.080731   0.022959   3.516
## p7vrq        0.027763   0.002256  12.306
## p7read       0.026065   0.001746  14.928
## dadocc       0.008239   0.001363   6.044
## dadunemp    -0.114896   0.046830  -2.453
## daded        0.140966   0.040810   3.454
## momed        0.062405   0.037454   1.666
## male        -0.055381   0.028434  -1.948
## deprive     -0.148123   0.025331  -5.848
## 
## Correlation of Fixed Effects:
##          (Intr) p7vrq  p7read dadocc dadnmp daded  momed  male  
## p7vrq    -0.108                                                 
## p7read    0.097 -0.767                                          
## dadocc    0.100 -0.056 -0.083                                   
## dadunemp -0.228  0.038  0.017  0.123                            
## daded    -0.214  0.002 -0.063 -0.212 -0.009                     
## momed    -0.240 -0.017 -0.023 -0.065  0.002 -0.419              
## male     -0.596  0.085 -0.050  0.011  0.020 -0.005 -0.013       
## deprive  -0.026  0.057  0.083  0.155 -0.110  0.038  0.023  0.006
third.model222 <- lme(attain ~ p7vrq+ p7read + dadocc + dadunemp + daded + momed + male + deprive, random =  ~ 1|neighid, data =  data, method = "ML")
intervals(third.model222)
## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                   lower         est.         upper
## (Intercept)  0.03570236  0.080731083  0.1257598101
## p7vrq        0.02333831  0.027762947  0.0321875819
## p7read       0.02264061  0.026065173  0.0294897392
## dadocc       0.00556540  0.008238936  0.0109124723
## dadunemp    -0.20674426 -0.114895833 -0.0230474062
## daded        0.06092473  0.140965706  0.2210066817
## momed       -0.01105306  0.062405000  0.1358630632
## male        -0.11114846 -0.055381414  0.0003856343
## deprive     -0.19788602 -0.148123268 -0.0983605128
## attr(,"label")
## [1] "Fixed effects:"
## 
##  Random Effects:
##   Level: neighid 
##                      lower       est.     upper
## sd((Intercept)) 0.02669044 0.07891699 0.2333379
## 
##  Within-group standard error:
##     lower      est.     upper 
## 0.6544745 0.6757445 0.6977058