library(ggplot2) #for plots
## Warning: package 'ggplot2' was built under R version 3.4.3
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
mtcars$cyl <- factor(mtcars$cyl)
mtcars$vs <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)
mtcars$carb <- factor(mtcars$carb)
mtcars$am <- factor(mtcars$am,labels=c("Automatic","Manual"))
boxplot(mpg ~ am, data = mtcars, col = (c("red","blue")), ylab = "Miles Per Gallon", xlab = "Transmission Type")
aggregate(mpg~am, data = mtcars, mean)
D_automatic <- mtcars[mtcars$am == "Automatic",]
D_manual <- mtcars[mtcars$am == "Manual",]
t.test(D_automatic$mpg, D_manual$mpg)
init <- lm(mpg ~ am, data = mtcars)
summary(init)
pairs(mpg ~ ., data = mtcars)
The new model will use the other variables to make it more accurate. We explore the other variable via a pairs plot 2 to see how all the variables correlate with mpg. From this we see that cyl, disp, hp, wt have the strongest correlation with mpg. We build a new model using these variables and compare them to the initial model with the anova function.
betterFit <- lm(mpg~am + cyl + disp + hp + wt, data = mtcars)
anova(init, betterFit)
par(mfrow = c(2,2))
plot(betterFit)
summary(betterFit)