# Good Practise: Basic house keeping: cleanup the env before you start new work
rm(list=ls())
# Libraries
library(DATA606)##
## Welcome to CUNY DATA606 Statistics and Probability for Data Analytics
## This package is designed to support this course. The text book used
## is OpenIntro Statistics, 3rd Edition. You can read this by typing
## vignette('os3') or visit www.OpenIntro.org.
##
## The getLabs() function will return a list of the labs available.
##
## The demo(package='DATA606') will list the demos that are available.
##
## Attaching package: 'DATA606'
## The following object is masked from 'package:utils':
##
## demo
library(StMoSim)## Loading required package: RcppParallel
## Loading required package: Rcpp
##
## Attaching package: 'Rcpp'
## The following object is masked from 'package:RcppParallel':
##
## LdFlags
library(tidyverse)## -- Attaching packages -------------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 2.2.1 v purrr 0.2.4
## v tibble 1.4.1 v dplyr 0.7.4
## v tidyr 0.8.0 v stringr 1.2.0
## v readr 1.1.1 v forcats 0.3.0
## -- Conflicts ----------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
1 - pnorm(-1.13, mean=0, sd=1)## [1] 0.8707619
normalPlot(mean = 0, sd = 1, bounds = c(-1.13, Inf), tails = FALSE)pnorm(0.18, mean=0, sd=1)## [1] 0.5714237
normalPlot(mean = 0, sd = 1, bounds = c(-Inf,0.18), tails = FALSE)1- pnorm(8, mean=0, sd=1)## [1] 6.661338e-16
normalPlot(mean = 0, sd = 1, bounds = c(8,Inf), tails = FALSE)pnorm(0.5, mean=0, sd=1) - pnorm(-0.5, mean=0, sd=1)## [1] 0.3829249
normalPlot(mean = 0, sd = 1, bounds = c(-0.5, 0.5), tails = FALSE)Mens: \[N(\mu=4313, \sigma=583)\] Womens: \[N(\mu=5261, \sigma=807)\]
z_mary <- (5513-5261)/807
z_mary ## [1] 0.3122677
z_leo <- (4948-4313)/583
z_leo## [1] 1.089194
1 - pnorm(4948, mean=4313, sd=583)## [1] 0.1380342
1 - pnorm(5513, mean=5261, sd=807)## [1] 0.3774186
heights <- c(54, 55, 56, 56, 57, 58, 58, 59, 60, 60, 60, 61, 61, 62, 62, 63, 63, 63, 64, 65, 65, 67, 67, 69, 73)
sd_heights <- sd(heights)
mean_heights <- mean(heights)
summary(heights)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 54.00 58.00 61.00 61.52 64.00 73.00
hist(heights)# check if mean+-sd falls in the 68-95-99.7 rule
value1 <- pnorm(61.52+1*4.58,mean=61.52,sd=4.58)-pnorm(61.52-1*4.58,mean=61.52,sd=4.58)
# check if mean+-2sd falls in the 68-95-99.7 rule
value2 <- pnorm(61.52+2*4.58,mean=61.52,sd=4.58)-pnorm(61.52-2*4.58,mean=61.52,sd=4.58)
# check if mean+-3sd falls in the 68-95-99.7 rule
value3 <- pnorm(61.52+3*4.58,mean=61.52,sd=4.58)-pnorm(61.52-3*4.58,mean=61.52,sd=4.58)
rulevalues <- c(value1, value2, value3)
rulevalues## [1] 0.6826895 0.9544997 0.9973002
qqnormSim(heights, nSim=500)(1 - .02)^(10 - 1) * .02## [1] 0.01667496
value = (1-.02)^(100)
value## [1] 0.1326196
value = 1/.02
value## [1] 50
value = 1/0.05
value## [1] 20
pb <- 0.51
k <- 2
n <- 3
factorial_n <- factorial(n)
factorial_k <- factorial(k)
factorial_nk <- factorial(n-k)
value <- ( factorial_n / (factorial_k * factorial_nk)) * pb^k * (1-pb)^(n-k)
value## [1] 0.382347
((1-pb) * pb * pb) * 3## [1] 0.382347
((1-.51) * .51 * .51) * 3## [1] 0.382347
choose(9,2)*0.15^3*0.85^7## [1] 0.03895012
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.