SD <- read.csv("./data/repdata%2Fdata%2FStormData.csv.bz2")
evtype_mod <- sapply(SD$EVTYPE, tolower)
evtype_mod <- gsub(" ", "", evtype_mod)
evtype_mod <- gsub("/","", evtype_mod)
evtype_mod <- gsub("-","", evtype_mod)
SD <- cbind(SD,evtype_mod)
library(plyr)
# Find sum of Fatalities per event
sd_fatalities <- data.frame(ddply(SD, .(evtype_mod), summarise, fatality_sum=sum(FATALITIES)))
# removing events with zero fatalities
sd_fatalities_nz <- subset(sd_fatalities, fatality_sum > 0 )
head(sd_fatalities_nz[order(-sd_fatalities_nz$fatality_sum),])
## evtype_mod fatality_sum
## 708 tornado 5633
## 104 excessiveheat 1903
## 125 flashflood 978
## 223 heat 937
## 383 lightning 816
## 730 tstmwind 504
sd_injuries <- data.frame(ddply(SD, .(evtype_mod), summarise, injury_sum=sum(INJURIES)))
sd_injuries_nz <- subset(sd_injuries, injury_sum > 0 )
head(sd_injuries_nz[order(-sd_injuries_nz$injury_sum),])
## evtype_mod injury_sum
## 708 tornado 91346
## 730 tstmwind 6957
## 138 flood 6789
## 104 excessiveheat 6525
## 383 lightning 5230
## 223 heat 2100
library(plyr)
library(ggplot2)
sd_propdmg <- data.frame(ddply(SD, .(evtype_mod), summarise, propertydamage_sum=sum(PROPDMG)))
sd_propdmg_nz <- subset(sd_propdmg, propertydamage_sum > 0)
d <- head(sd_propdmg_nz[order(-(sd_propdmg_nz$propertydamage_sum)),])
d
## evtype_mod propertydamage_sum
## 708 tornado 3212258.2
## 125 flashflood 1420674.6
## 730 tstmwind 1336103.6
## 138 flood 899938.5
## 649 thunderstormwind 876844.2
## 193 hail 688693.4
qplot(d$evtype_mod,d$propertydamage_sum, data=d, color = "red", geom = "density", xlab = "Event Type", ylab = "Property Damage (in USD)")
library(plyr)
sd_cropdmg <- data.frame(ddply(SD, .(evtype_mod), summarise, cropdamage_sum=sum(CROPDMG)))
sd_cropdmg_nz <- subset(sd_cropdmg, cropdamage_sum > 0)
cd <- head(sd_cropdmg_nz[order(-(sd_cropdmg_nz$cropdamage_sum)),])
cd
## evtype_mod cropdamage_sum
## 193 hail 579596.28
## 125 flashflood 179200.46
## 138 flood 168037.88
## 730 tstmwind 109202.60
## 708 tornado 100018.52
## 649 thunderstormwind 66791.45
qplot(cd$evtype_mod,cd$cropdamage_sum, data=d, color = "red", geom = "density", xlab = "Event Type", ylab = "Crop Damage (in USD)")
Following are the results
For Population health TORNADO seems to cause the most injuries and fatalities responsible for 5633 fatalities and 91346 injuries over the years
For economic impact based on property damage TORNADO caused $3,212,258 worth of property damage
As far as crop damage, HAIL was the leading cause of damage with $579,596 worth of damage