library(olsrr)
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
ols_best_subset(lm(Fertility ~ . , data = swiss))
##                          Best Subsets Regression                          
## --------------------------------------------------------------------------
## Model Index    Predictors
## --------------------------------------------------------------------------
##      1         Education                                                   
##      2         Education Catholic                                          
##      3         Education Catholic Infant.Mortality                         
##      4         Agriculture Education Catholic Infant.Mortality             
##      5         Agriculture Examination Education Catholic Infant.Mortality 
## --------------------------------------------------------------------------
## 
##                                                     Subsets Regression Summary                                                    
## ----------------------------------------------------------------------------------------------------------------------------------
##                        Adj.        Pred                                                                                            
## Model    R-Square    R-Square    R-Square     C(p)        AIC         SBIC        SBC        MSEP        FPE       HSP       APC  
## ----------------------------------------------------------------------------------------------------------------------------------
##   1        0.4406      0.4282      0.3976    35.2049    348.4223    213.1276    353.9727    93.1970    93.0244    2.0279    0.6091 
##   2        0.5745      0.5552      0.5137    18.4862    337.5636    202.8359    344.9642    74.1870    73.8435    1.6143    0.4835 
##   3        0.6625      0.6390      0.5958     8.1782    328.6684    195.2580    337.9192    61.6391    61.1254    1.3412    0.4002 
##   4        0.6993      0.6707      0.6203     5.0328    325.2408    193.0144    336.3417    57.5954    56.8488    1.2532    0.3722 
##   5        0.7067      0.6710      0.6079     6.0000    326.0716    194.4046    339.0226    58.9893    57.8969    1.2836    0.3791 
## ----------------------------------------------------------------------------------------------------------------------------------
## AIC: Akaike Information Criteria 
##  SBIC: Sawa's Bayesian Information Criteria 
##  SBC: Schwarz Bayesian Criteria 
##  MSEP: Estimated error of prediction, assuming multivariate normality 
##  FPE: Final Prediction Error 
##  HSP: Hocking's Sp 
##  APC: Amemiya Prediction Criteria