Discussion_5

Tom Detzel

2/27/2018

Discussion 5

1. Modify the program CoinTosses to toss a coin n times and print out after every 100 tosses the proportion of heads minus 1/2. Do these numbers appear to approach 0 as n increases? Modify the program again to print out, every 100 times, both of the following quantities: the proportion of heads minus 1/2, and the number of heads minus half the number of tosses. Do these numbers appear to approach 0 as n increases?

A. See below. Col 1 approaches 0 with some variation. Not so good for column 2.

coinToss <- function(n, bin=100) {
  # put n flips in a vector and sum
  flips <- cumsum(sample(c(0,1), n, replace=TRUE))
  # set the number of 100-count bins
  bins <- seq(bin, n, by=bin)
  # do the math
  results <- as.data.frame(cbind(abs(flips[bins] / bins - .5),
                      abs(flips[bins] - bins/2)))
  colnames(results) <- c('Heads-1/2', 'Heads-1/2*Flips')
  return(results)
}

set.seed(1234)
coinToss(10000)
##        Heads-1/2 Heads-1/2*Flips
## 1   0.0500000000               5
## 2   0.0150000000               3
## 3   0.0033333333               1
## 4   0.0075000000               3
## 5   0.0140000000               7
## 6   0.0300000000              18
## 7   0.0242857143              17
## 8   0.0237500000              19
## 9   0.0211111111              19
## 10  0.0180000000              18
## 11  0.0118181818              13
## 12  0.0025000000               3
## 13  0.0069230769               9
## 14  0.0050000000               7
## 15  0.0060000000               9
## 16  0.0006250000               1
## 17  0.0047058824               8
## 18  0.0033333333               6
## 19  0.0036842105               7
## 20  0.0015000000               3
## 21  0.0023809524               5
## 22  0.0009090909               2
## 23  0.0017391304               4
## 24  0.0012500000               3
## 25  0.0036000000               9
## 26  0.0026923077               7
## 27  0.0033333333               9
## 28  0.0042857143              12
## 29  0.0065517241              19
## 30  0.0060000000              18
## 31  0.0041935484              13
## 32  0.0028125000               9
## 33  0.0024242424               8
## 34  0.0005882353               2
## 35  0.0014285714               5
## 36  0.0002777778               1
## 37  0.0013513514               5
## 38  0.0013157895               5
## 39  0.0005128205               2
## 40  0.0002500000               1
## 41  0.0007317073               3
## 42  0.0007142857               3
## 43  0.0002325581               1
## 44  0.0002272727               1
## 45  0.0011111111               5
## 46  0.0010869565               5
## 47  0.0012765957               6
## 48  0.0012500000               6
## 49  0.0002040816               1
## 50  0.0014000000               7
## 51  0.0005882353               3
## 52  0.0003846154               2
## 53  0.0003773585               2
## 54  0.0014814815               8
## 55  0.0010909091               6
## 56  0.0007142857               4
## 57  0.0003508772               2
## 58  0.0003448276               2
## 59  0.0006779661               4
## 60  0.0010000000               6
## 61  0.0019672131              12
## 62  0.0025806452              16
## 63  0.0031746032              20
## 64  0.0029687500              19
## 65  0.0026153846              17
## 66  0.0040909091              27
## 67  0.0037313433              25
## 68  0.0035294118              24
## 69  0.0033333333              23
## 70  0.0031428571              22
## 71  0.0028169014              20
## 72  0.0018055556              13
## 73  0.0009589041               7
## 74  0.0020270270              15
## 75  0.0016000000              12
## 76  0.0015789474              12
## 77  0.0016883117              13
## 78  0.0019230769              15
## 79  0.0015189873              12
## 80  0.0023750000              19
## 81  0.0013580247              11
## 82  0.0014634146              12
## 83  0.0018072289              15
## 84  0.0020238095              17
## 85  0.0012941176              11
## 86  0.0012790698              11
## 87  0.0008045977               7
## 88  0.0009090909               8
## 89  0.0015730337              14
## 90  0.0017777778              16
## 91  0.0015384615              14
## 92  0.0017391304              16
## 93  0.0015053763              14
## 94  0.0006382979               6
## 95  0.0000000000               0
## 96  0.0012500000              12
## 97  0.0014432990              14
## 98  0.0015306122              15
## 99  0.0013131313              13
## 100 0.0010000000              10