Data

dat <- read.csv("~/Desktop/472final.csv")
dat <- na.omit(dat)
z <- dat[,c(8,9,10,11)]
z <- na.omit(z)

Correlation

round(cor(z), 3)
##               value.health value.profit value.cons value.overall
## value.health         1.000        0.768      0.473         0.781
## value.profit         0.768        1.000      0.415         0.710
## value.cons           0.473        0.415      1.000         0.549
## value.overall        0.781        0.710      0.549         1.000

Scatter Plot (here)

Mean and Standard Deviations

results <- data.frame(
  mean = c(mean(dat$value.overall),mean(dat$value.health),mean(dat$value.cons),mean(dat$value.profit)),
  sd = c(sd(dat$value.overall),sd(dat$value.health), sd(dat$value.cons), sd(dat$value.profit))
)
row.names(results) <- c("Overall", "Health", "Cons","Profit")
results
##             mean       sd
## Overall 2.518841 1.215366
## Health  2.573913 1.271747
## Cons    3.220290 1.152926
## Profit  2.162319 1.098241

Question 22

n <- length(dat$region)

one <- subset(dat, dat$q22=="1")
oneFreq <- length(one$region)/n

two <- subset(dat, dat$q22=="2")
twoFreq <- length(two$region)/n

three <- subset(dat, dat$q22=="3")
threeFreq <- length(three$region)/n

four <- subset(dat, dat$q22=="4")
fourFreq <- length(four$region)/n

five <- subset(dat, dat$q22=="5")
fiveFreq <- length(five$region)/n

six <- subset(dat, dat$q22=="6")
sixFreq <- length(six$region)/n

seven <- subset(dat, dat$q22=="7")
sevenFreq <- length(seven$region)/n

q22results <- data.frame(
  Frequency = c(oneFreq,twoFreq,threeFreq,fourFreq,fiveFreq,sixFreq,sevenFreq)
)
row.names(q22results) <- c("Animal Health and Wellbeing (1)", "Increase Consumer Confidence (2)", 
                           "Increase Farm Profits (3)", "Helps send High Quality Milk (4)", 
                           "Protects Milk Market (5)", "Unifies Dairy Industry on Animal Welfare (6)", 
                           "Program is Not Important (7)")
q22results
##                                                Frequency
## Animal Health and Wellbeing (1)              0.060869565
## Increase Consumer Confidence (2)             0.426086957
## Increase Farm Profits (3)                    0.005797101
## Helps send High Quality Milk (4)             0.020289855
## Protects Milk Market (5)                     0.127536232
## Unifies Dairy Industry on Animal Welfare (6) 0.023188406
## Program is Not Important (7)                 0.336231884