library(plyr)
## Warning: package 'plyr' was built under R version 3.3.3
Page 72 Question 9
Suppose that we have a sequence of occurrences. We assume that the time X between occurrences is exponentially distributed with \(lambda\) = 1/10, so on the average, there is one occurrence every 10 minutes (see Example 2.17). You come upon this system at time 100, and wait until the next occurrence. Make a conjecture concerning how long, on the average, you will have to wait. Write a program to see if your conjecture is right
s<-function() {
#rpois generates random standar deviates(from 10 mins) based given lambda.
Randomstd<-sqrt(rpois(10, 0.1))
print(Randomstd)
return (mean(Randomstd))
}
# repet s function 100 time to generate a series of STD
randomSTD<-do.call(rbind, rlply(100, s))
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 1 0 0 0 0 0
## [1] 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000
## [8] 0.000000 1.414214 0.000000
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0 0 0 0 0 1 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 1 0 0 1 0 0 0 0
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## [8] 0.000000 1.414214 0.000000
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 1 0 0 0 0 0 0 1 0
## [1] 0 0 1 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0.000000 0.000000 0.000000 0.000000 1.414214 0.000000 0.000000
## [8] 0.000000 0.000000 0.000000
## [1] 0 0 0 0 1 0 0 0 0 1
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 1
## [1] 0 0 0 1 0 0 0 0 1 0
## [1] 0.000000 0.000000 1.414214 0.000000 0.000000 0.000000 0.000000
## [8] 0.000000 0.000000 0.000000
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 1 0 0 0 1 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 1 0 1 0
## [1] 0 0 0 0 0 0 0 0 1 1
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 1 0 0 0 0 0 1 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 1 0 0 0 1 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 1
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 1 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 1 0 0 1
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 1 0 0 0 0 0 0 0 0 1
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## [8] 1.414214 0.000000 0.000000
## [1] 0 0 0 1 0 1 0 1 0 0
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 1 0 0 0 0 0
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 1 0 0
## [1] 0 0 0 0 0 0 0 0 1 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 1 0 0 1 0 0 0 0 0
## [1] 0 1 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 1 0 0 0 0 0
## [1] 1 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 1 0 0
## [1] 0 0 0 0 0 0 0 1 0 0
## [1] 0.000000 0.000000 0.000000 1.414214 0.000000 1.000000 0.000000
## [8] 1.000000 0.000000 0.000000
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 1 0 1 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 1 0 0
## [1] 0 0 0 0 0 0 0 0 0 1
## [1] 1 0 0 0 0 0 0 0 0 0
## [1] 1 1 0 1 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 1 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 1 0 0 1 1 1
## [1] 0.000000 1.414214 0.000000 0.000000 0.000000 0.000000 0.000000
## [8] 0.000000 0.000000 0.000000
## [1] 0.000000 1.414214 0.000000 0.000000 0.000000 1.000000 0.000000
## [8] 0.000000 0.000000 0.000000
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 1
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 1 0 0
## [1] 0 0 1 0 0 0 1 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 1 0 0 1 0 0 1 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 1 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 0
## [1] 0 0 0 0 0 0 0 0 0 1
## [1] 0.000000 1.414214 0.000000 0.000000 1.000000 0.000000 0.000000
## [8] 0.000000 0.000000 0.000000
## [1] 0 1 0 0 1 1 0 1 0 0
## [1] 0 0 0 0 0 0 0 0 0 1
## [1] 0 0 0 0 0 0 0 0 0 0
#print(dd[,1])
rSTD<-mean(randomSTD[,1]) # average deviates(from 10 mins)
c(10-1.96*rSTD/sqrt(100), 10+1.96*rSTD/sqrt(100)) # 95% confident of waitting time
## [1] 9.981629 10.018371
hist(randomSTD[,1],main="100 Random Standar Deviates (from 10 mins) ") #