EMAIL: dheepcho@gmail.com COLLEGE: MISB Bocconi

In this report, we will analyze the Ranklist of Fortune 500 Companies US.

Objective:

Identify the factors that effects the Ranklist of Fortune 500 Companies US.

Reading the dataset into R

rfcus.df= read.csv("Fortune Companies.csv")

Finding the dimensions of dataset

dim(rfcus.df)
## [1] 500  10

Summarizing

summary(rfcus.df)
##       Rank                       Company.Name Number.of.Employees
##  Min.   :  1.0   Alcoa                 :  2   Min.   :   1326    
##  1st Qu.:125.8   Avnet                 :  2   1st Qu.:  12125    
##  Median :250.5   Regions Financial     :  2   Median :  25600    
##  Mean   :250.5   3M                    :  1   Mean   :  56956    
##  3rd Qu.:375.2   A-Mark Precious Metals:  1   3rd Qu.:  57625    
##  Max.   :500.0   Abbott Laboratories   :  1   Max.   :2300000    
##                  (Other)               :491                      
##  Previous.Rank   Revenues..in...  Revenue.Change    Profits       
##  Min.   :  1.0   Min.   :  5145   -0.90% :  7    Min.   :    1.0  
##  1st Qu.:127.8   1st Qu.:  7245   1.90%  :  7    1st Qu.:  353.6  
##  Median :251.5   Median : 11384   -      :  6    Median :  780.0  
##  Mean   :257.1   Mean   : 24112   -0.40% :  6    Mean   : 2034.6  
##  3rd Qu.:379.2   3rd Qu.: 22605   0.20%  :  6    3rd Qu.: 2010.5  
##  Max.   :761.0   Max.   :485873   2.50%  :  6    Max.   :45687.0  
##  NA's   :8                        (Other):462    NA's   :1        
##  Profit.Change     Assets         Market.Value   
##  -      : 66   Min.   :    437   Min.   :   120  
##  5.20%  :  4   1st Qu.:   8436   1st Qu.:  6996  
##  -13.50%:  3   Median :  19324   Median : 17696  
##  10.60% :  3   Mean   :  80389   Mean   : 41322  
##  19.10% :  3   3rd Qu.:  48126   3rd Qu.: 41768  
##  4.40%  :  3   Max.   :3287968   Max.   :753718  
##  (Other):418                     NA's   :30
library(psych)
describe(rfcus.df)
##                     vars   n     mean        sd  median  trimmed      mad
## Rank                   1 500   250.50    144.48   250.5   250.50   185.32
## Company.Name*          2 500   248.44    143.92   248.5   248.37   185.32
## Number.of.Employees    3 500 56955.53 123622.29 25600.0 35679.33 25352.46
## Previous.Rank          4 492   257.11    154.05   251.5   253.59   186.81
## Revenues..in...        5 500 24111.75  38337.35 11384.0 15331.88  7373.71
## Revenue.Change*        6 500   144.10     84.82   143.0   145.04   111.19
## Profits                7 499  2034.57   3816.66   780.0  1188.83   817.51
## Profit.Change*         8 500   166.07    120.91   164.5   163.39   165.31
## Assets                 9 500 80389.34 270425.70 19324.5 30796.67 20080.33
## Market.Value          10 470 41322.40  75614.01 17696.0 24360.06 18755.63
##                      min     max   range  skew kurtosis       se
## Rank                   1     500     499  0.00    -1.21     6.46
## Company.Name*          1     497     496  0.00    -1.21     6.44
## Number.of.Employees 1326 2300000 2298674 12.46   215.02  5528.56
## Previous.Rank          1     761     760  0.20    -0.81     6.95
## Revenues..in...     5145  485873  480728  5.45    46.90  1714.50
## Revenue.Change*        1     288     287 -0.07    -1.20     3.79
## Profits                1   45687   45686  5.27    41.56   170.86
## Profit.Change*         1     373     372  0.08    -1.36     5.41
## Assets               437 3287968 3287531  7.82    70.10 12093.81
## Market.Value         120  753718  753598  4.65    28.73  3487.81
str(rfcus.df)
## 'data.frame':    500 obs. of  10 variables:
##  $ Rank               : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Company.Name       : Factor w/ 497 levels "3M","A-Mark Precious Metals",..: 473 71 45 177 299 455 131 201 54 191 ...
##  $ Number.of.Employees: int  2300000 367700 116000 72700 68000 230000 204000 225000 268540 201000 ...
##  $ Previous.Rank      : int  1 4 3 2 5 6 7 8 10 9 ...
##  $ Revenues..in...    : int  485873 223604 215639 205004 192487 184840 177526 166380 163786 151800 ...
##  $ Revenue.Change     : Factor w/ 288 levels "-","-0.10%","-0.40%",..: 134 257 112 44 258 182 175 282 155 140 ...
##  $ Profits            : num  13643 24074 45687 7840 2258 ...
##  $ Profit.Change      : Factor w/ 373 levels "-","-0.20%","-0.30%",..: 155 182 35 131 337 255 191 52 53 94 ...
##  $ Assets             : int  198825 620854 321686 330314 56563 122810 94462 221690 403821 237951 ...
##  $ Market.Value       : int  218619 411035 753718 340056 31439 157793 81310 52968 255679 46349 ...

Boxplot on Number of Employees

boxplot(rfcus.df$Number.of.Employees, xlab="Number of Employees", main="Number of Employees", col=c("yellow"), horizontal = TRUE)

Histogram on Revenues in $

hist(rfcus.df$Revenues..in..., xlab = "Revenues in $", main = "Distribution of Revenues", xlim = c(1, 500000))

Scatterplot:

Effects of Rank with respect to Number of Employees

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot.matrix(formula = ~rfcus.df$Rank + rfcus.df$Number.of.Employees)
## Warning: 'scatterplot.matrix' is deprecated.
## Use 'scatterplotMatrix' instead.
## See help("Deprecated") and help("car-deprecated").

Companies with top ranks reflects higher number of employees

Effects of Rank with respect to Profits and Revenues

scatterplot.matrix(formula = ~rfcus.df$Rank + rfcus.df$Profits + rfcus.df$Revenues, diagonal="histogram")
## Warning: 'scatterplot.matrix' is deprecated.
## Use 'scatterplotMatrix' instead.
## See help("Deprecated") and help("car-deprecated").

Companies with top ranks reflects higher profits and revenues

Analysis of Current rank and previous rank

library(corrgram)
corrgram(rfcus.df[c(1,4)], upper.panel = panel.pie, lower.panel = panel.cor)

Correlation matrix of Rank with Number of Employees, Revenues(in $) and Assets

cor(rfcus.df$Rank, rfcus.df[, c(3,5,9)])
##      Number.of.Employees Revenues..in...     Assets
## [1,]          -0.3453529       -0.606263 -0.3036207

Visualizing Correlations:

library(corrgram)
corrgram(rfcus.df[c(1,3:5,7,9,10)], upper.panel = panel.pie)

library(corrgram)
corrgram(rfcus.df[c(1,3:5,7,9,10)], upper.panel = panel.pie, lower.panel = panel.cor)

library(corrplot)
## corrplot 0.84 loaded
corrplot(corr=cor(rfcus.df[, c(1,3:5,7,9,10)], use = "complete.obs"), method="ellipse")

Companies with top rank reflects higher number of employees, higher revenues, higher profits, higher assets and higher market value.

Hypothesis:

Let us assume the null hypothesis: Market value and assets does not affect the ranking of company

Test using Linear model regression

fit <- lm(rfcus.df$Rank ~ rfcus.df$Market.Value + rfcus.df$Assets)
summary(fit)
## 
## Call:
## lm(formula = rfcus.df$Rank ~ rfcus.df$Market.Value + rfcus.df$Assets)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -262.01  -97.55   -1.26   99.82  350.64 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            2.916e+02  6.580e+00  44.311  < 2e-16 ***
## rfcus.df$Market.Value -8.106e-04  7.970e-05 -10.170  < 2e-16 ***
## rfcus.df$Assets       -8.776e-05  2.174e-05  -4.038 6.31e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 124.4 on 467 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.2544, Adjusted R-squared:  0.2512 
## F-statistic: 79.66 on 2 and 467 DF,  p-value: < 2.2e-16

It clearly shows that Market value and assets significantly affects the rank since its p-value<0.05. Thus null hypothesis is rejected.

Hypothesis:

Let us assume the null hypothesis: Profit does not affect the ranking of company

Correlation test

cor.test(rfcus.df$Rank, rfcus.df$Profits)
## 
##  Pearson's product-moment correlation
## 
## data:  rfcus.df$Rank and rfcus.df$Profits
## t = -11.882, df = 497, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.5359989 -0.3990469
## sample estimates:
##      cor 
## -0.47035

It clearly shows that Profit of a company plays an significant role in deciding its rank since its p-value<0.05. Thus null hypothesis is rejected.

Conclusion:

  1. Companies with higher number of employees helps in growth of its company and rank better than that of the lesser.
  2. Companies that have produced higher revenue and profit has stayed top in ranking.
  3. Companies maintaining higher market value and assests has also been one of the supporting factor for top ranking companies.