mass<-read.csv(url("http://cknudson.com/data/mussels.csv"))
attach(mass)
mmod<-lm(AvgAmmonia~AvgMass+attached,mass)
mmod
## 
## Call:
## lm(formula = AvgAmmonia ~ AvgMass + attached, data = mass)
## 
## Coefficients:
##  (Intercept)       AvgMass  attachedRock  
##     0.001140      0.239279     -0.002563
summary(mmod)
## 
## Call:
## lm(formula = AvgAmmonia ~ AvgMass + attached, data = mass)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -2.019e-03 -5.240e-04 -5.959e-05  3.429e-04  2.526e-03 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.0011398  0.0005533   2.060     0.05 *  
## AvgMass       0.2392793  0.0215863  11.085 3.86e-11 ***
## attachedRock -0.0025629  0.0003931  -6.519 7.91e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.00103 on 25 degrees of freedom
## Multiple R-squared:  0.8574, Adjusted R-squared:  0.846 
## F-statistic: 75.18 on 2 and 25 DF,  p-value: 2.66e-11
head(mass)
##   GroupID dry.mass count attached lipid protein carbo  ash Kcal ammonia
## 1       1     0.55    20     Rock  8.14   47.43 21.59 5.51 3.61    0.07
## 2       2     0.45    19     Rock  9.34   53.89 23.41 6.34 4.06    0.07
## 3       3     0.37    20     Rock  9.12   49.01 21.10 5.63 3.74    0.07
## 4       4     0.63    20     Rock 10.32   49.25 16.55 5.41 3.66    0.11
## 5       5     0.57    20     Rock 10.08   50.17 17.51 6.10 3.72    0.11
## 6       6     0.57    22     Rock 10.83   53.84 19.97 6.36 4.04    0.11
##     O2 AvgAmmonia   AvgO2  AvgMass
## 1 0.82 0.00350000 0.04100 0.027500
## 2 0.70 0.00368421 0.03684 0.023684
## 3 0.62 0.00350000 0.03100 0.018500
## 4 0.89 0.00550000 0.04450 0.031500
## 5 1.09 0.00550000 0.05450 0.028500
## 6 1.00 0.00500000 0.04545 0.025909
mcoef<-coef(summary(mmod))[2,1]/coef(summary(mmod))[2,2]
mcoef
## [1] 11.08476
# with the T of 3.430024, we can compute the probabily of this occuring with 25 degrees of freedom.
confint(mmod)
##                      2.5 %       97.5 %
## (Intercept)   1.999745e-07  0.002279427
## AvgMass       1.948215e-01  0.283737200
## attachedRock -3.372584e-03 -0.001753235
#We are 95% confident that for any given average mass, the count would be between .000034 and .000129
newdata<-data.frame(AvgMass=.05, attached="Rock")
predy<-predict(mmod,newdata,interval="predict")
predy
##          fit         lwr        upr
## 1 0.01054087 0.008065655 0.01301609
#This tells us that we are 95% confident that for any given average mass, the average 
#count will be between 73.31 and 82.86