This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
#install the necessary packages
# install.packages("readr")
# install.packages("plyr")
# install.packages("stringr")
# install.packages("stringi")
# install.packages("magrittr")
# install.packages("dplyr")
# install.packages('tm')
# install.packages('RColorBrewer')
# install.packages('wordcloud')
library(readr)
gear <- read.csv("Samsung Tweets.csv", row.names=1, sep=";")
geartweets <- gear$tweettext
#********************************************
# Clean tweets
#********************************************
#use this function to clean the tweets
clean.text = function(x)
{
# tolower
x = tolower(x)
# remove rt
x = gsub("rt", "", x)
# remove at
x = gsub("@\\w+", "", x)
# remove punctuation
x = gsub("[[:punct:]]", "", x)
# remove numbers
x = gsub("[[:digit:]]", "", x)
# remove links http
x = gsub("http\\w+", "", x)
# remove tabs
x = gsub("[ |\t]{2,}", "", x)
# remove blank spaces at the beginning
x = gsub("^ ", "", x)
# remove blank spaces at the end
x = gsub(" $", "", x)
return(x)
}
# clean tweets
geartweets = clean.text(geartweets)
sports.words = scan('Sports_Word.txt', what='character', comment.char=';')
score.topic = function(sentences, dict, .progress='none')
{
require(plyr)
require(stringr)
require(stringi)
# we got a vector of sentences. plyr will handle a list
# or a vector as an "l" for us
# we want a simple array of scores back, so we use
# "l" + "a" + "ply" = "laply":
scores = laply(sentences, function(sentence, dict) {
# clean up sentences with R's regex-driven global substitute, gsub():
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
# and convert to lower case:
sentence = tolower(sentence)
# split into words. str_split is in the stringr package
word.list = str_split(sentence, '\\s+')
# sometimes a list() is one level of hierarchy too much
words = unlist(word.list)
# compare our words to the dictionaries of positive & negative terms
topic.matches = match(words, dict)
# match() returns the position of the matched term or NA
# we just want a TRUE/FALSE:
topic.matches = !is.na(topic.matches)
# and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(topic.matches)
return(score)
}, dict, .progress=.progress )
topicscores.df = data.frame(score=scores, text=sentences)
return(topicscores.df)
}
topic.scores = score.topic(geartweets, sports.words, .progress='none')
## Loading required package: plyr
## Loading required package: stringr
## Loading required package: stringi
pos.words = scan('positive-words.txt', what='character', comment.char=';')
neg.words = scan('negative-words.txt', what='character', comment.char=';')
neg.words = c(neg.words, 'wtf', 'fail')
#Implementing our sentiment scoring algorithm
require(plyr)
require(stringr)
require(stringi)
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
# we got a vector of sentences. plyr will handle a list
# or a vector as an "l" for us
# we want a simple array of scores back, so we use
# "l" + "a" + "ply" = "laply":
scores = laply(sentences, function(sentence, pos.words, neg.words) {
# clean up sentences with R's regex-driven global substitute, gsub():
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
# and convert to lower case:
sentence = tolower(sentence)
# split into words. str_split is in the stringr package
word.list = str_split(sentence, '\\s+')
# sometimes a list() is one level of hierarchy too much
words = unlist(word.list)
# compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos.words)
neg.matches = match(words, neg.words)
# match() returns the position of the matched term or NA
# we just want a TRUE/FALSE:
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
# and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)
return(score)
}, pos.words, neg.words, .progress=.progress )
scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}
sentiment.scores= score.sentiment(topic.scores$text, pos.words, neg.words, .progress='none')
score <- sentiment.scores$score
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following objects are masked from 'package:plyr':
##
## arrange, mutate, rename, summarise
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
p <- plot_ly(x = ~score, type = "histogram")
p
pos.words = scan('positive-words.txt', what='character', comment.char=';')
neg.words = scan('negative-words.txt', what='character', comment.char=';')
neg.words = c(neg.words, 'wtf', 'fail')
#Implementing our sentiment scoring algorithm
require(plyr)
require(stringr)
require(stringi)
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
# we got a vector of sentences. plyr will handle a list
# or a vector as an "l" for us
# we want a simple array of scores back, so we use
# "l" + "a" + "ply" = "laply":
scores = laply(sentences, function(sentence, pos.words, neg.words) {
# clean up sentences with R's regex-driven global substitute, gsub():
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
# and convert to lower case:
sentence = tolower(sentence)
# split into words. str_split is in the stringr package
word.list = str_split(sentence, '\\s+')
# sometimes a list() is one level of hierarchy too much
words = unlist(word.list)
# compare our words to the dictionaries of positive & negative terms
pos.matches = match(words, pos.words)
neg.matches = match(words, neg.words)
# match() returns the position of the matched term or NA
# we just want a TRUE/FALSE:
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
# and conveniently enough, TRUE/FALSE will be treated as 1/0 by sum():
score = sum(pos.matches) - sum(neg.matches)
return(score)
}, pos.words, neg.words, .progress=.progress )
scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}
sentiment.scores= score.sentiment(geartweets, pos.words, neg.words, .progress='none')
pos.mentioned = subset(sentiment.scores, score > 0)
neu.mentioned = subset(sentiment.scores, score == 0)
neg.mentioned = subset(sentiment.scores, score < 0)
N= nrow(sentiment.scores)
Npos = nrow(pos.mentioned)
Nneu = nrow(neu.mentioned)
Nneg = nrow(neg.mentioned)
dftemp=data.frame(topic=c("Positive", "Negative", "Neutral" ),
number=c(Npos, Nneg, Nneu))
library(plotly)
p <- plot_ly(data=dftemp, labels = ~topic, values = ~number, type = 'pie') %>%
layout(title = 'Pie Chart of Tweets mentioning Positive, Negative and Neutral',
xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE))
p
require(tm)
## Loading required package: tm
## Loading required package: NLP
##
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
## annotate
require(wordcloud)
## Loading required package: wordcloud
## Loading required package: RColorBrewer
require(RColorBrewer)
negativeTweets = subset(sentiment.scores, score < 0)$text
corpus = Corpus(VectorSource(negativeTweets))
# corpus = Corpus(VectorSource(cmail))
# create term-document matrix
tdm = TermDocumentMatrix(
corpus,
control = list(
wordLengths=c(3,20),
removePunctuation = TRUE,
stopwords = c("the", "a", stopwords("english")),
removeNumbers = TRUE, tolower = TRUE) )
# convert as matrix
tdm = as.matrix(tdm)
# get word counts in decreasing order
word_freqs = sort(rowSums(tdm), decreasing=TRUE)
word_freqs = word_freqs[-(1:12)]
# create a data frame with words and their frequencies
dm = data.frame(word=names(word_freqs), freq=word_freqs)
#Plot corpus in a clored graph; need RColorBrewer package
wordcloud(head(dm$word, 100), head(dm$freq, 100), random.order=FALSE, colors=brewer.pal(8, "Dark2"))
#check top 50 most mentioned words
head(word_freqs, 50)
## sma mercedes review time iphone
## 241 215 202 198 175
## new still gear amp technology
## 170 166 152 138 135
## bad afar just que good
## 128 116 103 99 99
## ugly wrist die one del
## 98 97 95 93 86
## date integrated sin release launch
## 85 84 82 80 80
## teams design fitness mercedesbenz galaxygear
## 79 77 77 77 75
## rumor tech got motoactv motorola
## 74 74 72 71 68
## rumors nokia now will rumours
## 67 67 65 64 64
## querer application cae cuando diferencia
## 63 62 62 62 62
## entre bao discontinued android vehicle
## 62 61 61 60 60