Transformations not needed.
genes$transporter_fac <- as.factor(genes$transporter_fac)
genes$triallelic_fac <- as.factor(genes$triallelic_fac)
mod1a <- lm(SIR_tot ~ transporter_fac*risk_c, data=genes)
summary(mod1a)
Call:
lm(formula = SIR_tot ~ transporter_fac * risk_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-18.932 -6.396 -0.719 4.759 37.323
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.5390 1.0079 18.394 <2e-16 ***
transporter_fac1 0.8415 1.3115 0.642 0.5216
transporter_fac2 0.4376 1.6510 0.265 0.7912
risk_c 2.9180 1.5856 1.840 0.0668 .
transporter_fac1:risk_c 2.6144 2.1429 1.220 0.2235
transporter_fac2:risk_c 5.1826 2.4757 2.093 0.0372 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.641 on 273 degrees of freedom
(77 observations deleted due to missingness)
Multiple R-squared: 0.1194, Adjusted R-squared: 0.1032
F-statistic: 7.401 on 5 and 273 DF, p-value: 1.581e-06
mod1b <- lm(SIR_tot ~ triallelic_fac*risk_c, data=genes)
summary(mod1b)
Call:
lm(formula = SIR_tot ~ triallelic_fac * risk_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-19.762 -6.164 -0.723 4.860 37.496
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.6438 1.2072 16.273 <2e-16 ***
triallelic_fac1 -1.1083 1.4729 -0.753 0.4524
triallelic_fac2 -0.1807 1.6404 -0.110 0.9123
risk_c 4.4174 1.8915 2.335 0.0203 *
triallelic_fac1:risk_c -0.2015 2.3568 -0.085 0.9319
triallelic_fac2:risk_c 3.1254 2.5530 1.224 0.2219
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.732 on 269 degrees of freedom
(81 observations deleted due to missingness)
Multiple R-squared: 0.1145, Adjusted R-squared: 0.098
F-statistic: 6.954 on 5 and 269 DF, p-value: 3.976e-06
genes$neur_c <- genes$Neurot - mean(genes$Neurot, na.rm=T)
mod2a <- lm(SIR_tot ~ transporter_fac*risk_c + neur_c, data=genes)
summary(mod2a)
Call:
lm(formula = SIR_tot ~ transporter_fac * risk_c + neur_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-17.481 -6.596 -1.158 4.617 36.088
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.6905 1.0100 18.505 <2e-16 ***
transporter_fac1 0.6231 1.3119 0.475 0.6352
transporter_fac2 0.2231 1.6479 0.135 0.8924
risk_c 2.5813 1.5854 1.628 0.1047
neur_c 1.6671 0.7445 2.239 0.0259 *
transporter_fac1:risk_c 2.3238 2.1357 1.088 0.2775
transporter_fac2:risk_c 5.3105 2.4635 2.156 0.0320 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.588 on 271 degrees of freedom
(78 observations deleted due to missingness)
Multiple R-squared: 0.1354, Adjusted R-squared: 0.1162
F-statistic: 7.072 on 6 and 271 DF, p-value: 5.205e-07
mod2b <- lm(SIR_tot ~ triallelic_fac*risk_c + neur_c, data=genes)
summary(mod2b)
Call:
lm(formula = SIR_tot ~ triallelic_fac * risk_c + neur_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-18.710 -6.507 -1.421 4.642 36.160
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.98296 1.21511 16.445 <2e-16 ***
triallelic_fac1 -1.54226 1.48016 -1.042 0.2984
triallelic_fac2 -0.54281 1.64198 -0.331 0.7412
risk_c 3.72642 1.90371 1.957 0.0513 .
neur_c 1.78906 0.75643 2.365 0.0187 *
triallelic_fac1:risk_c 0.05525 2.34486 0.024 0.9812
triallelic_fac2:risk_c 3.44106 2.54066 1.354 0.1768
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.666 on 267 degrees of freedom
(82 observations deleted due to missingness)
Multiple R-squared: 0.1328, Adjusted R-squared: 0.1133
F-statistic: 6.815 on 6 and 267 DF, p-value: 9.703e-07
Model results hold when neuroticism entered as covariate.
| Dependent variable: | ||
| SIR_tot | ||
| (1) | (2) | |
| Constant | 18.539*** | 18.690*** |
| (1.008) | (1.010) | |
| LaLa | 0.842 | 0.623 |
| (1.311) | (1.312) | |
| SS | 0.438 | 0.223 |
| (1.651) | (1.648) | |
| EarlyStress | 2.918* | 2.581 |
| (1.586) | (1.585) | |
| Neuroticism | 1.667** | |
| (0.744) | ||
| LaLa*EarlyStress | 2.614 | 2.324 |
| (2.143) | (2.136) | |
| SS*EarlyStress | 5.183** | 5.310** |
| (2.476) | (2.463) | |
| Observations | 279 | 278 |
| R2 | 0.119 | 0.135 |
| Adjusted R2 | 0.103 | 0.116 |
| Residual Std. Error | 9.641 (df = 273) | 9.588 (df = 271) |
| F Statistic | 7.401*** (df = 5; 273) | 7.072*** (df = 6; 271) |
| Note: | p<0.1; p<0.05; p<0.01 | |
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the
existing scale.
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the
existing scale.
LaLa group displays a greater susceptibility to the impact of life stress (NLEQ) on self-control, whereas SS group less reactive to life stress in terms of effects on hoarding.
mod4a <- lm(OCIR_tot ~ transporter_fac*risk_c, data=genes)
summary(mod4a)
Call:
lm(formula = OCIR_tot ~ transporter_fac * risk_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-18.520 -7.019 -2.460 6.120 35.451
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.171 1.006 12.097 <2e-16 ***
transporter_fac1 1.776 1.310 1.356 0.1761
transporter_fac2 1.816 1.630 1.114 0.2663
risk_c 3.024 1.595 1.896 0.0590 .
transporter_fac1:risk_c 3.838 2.149 1.786 0.0752 .
transporter_fac2:risk_c 2.400 2.476 0.969 0.3332
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.632 on 275 degrees of freedom
(75 observations deleted due to missingness)
Multiple R-squared: 0.1194, Adjusted R-squared: 0.1034
F-statistic: 7.46 on 5 and 275 DF, p-value: 1.394e-06
mod4b <- lm(OCIR_tot ~ triallelic_fac*risk_c, data=genes)
summary(mod4b)
Call:
lm(formula = OCIR_tot ~ triallelic_fac * risk_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-17.524 -6.824 -2.538 5.459 35.462
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.0130 1.2045 10.804 <2e-16 ***
triallelic_fac1 0.2558 1.4696 0.174 0.8619
triallelic_fac2 0.9039 1.6271 0.556 0.5790
risk_c 4.4067 1.8872 2.335 0.0203 *
triallelic_fac1:risk_c 0.7344 2.3564 0.312 0.7556
triallelic_fac2:risk_c 1.5885 2.5451 0.624 0.5331
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.71 on 271 degrees of freedom
(79 observations deleted due to missingness)
Multiple R-squared: 0.1045, Adjusted R-squared: 0.08794
F-statistic: 6.323 on 5 and 271 DF, p-value: 1.432e-05
mod5a <- lm(OCIR_tot ~ transporter_fac*risk_c + neur_c, data=genes)
summary(mod5a)
Call:
lm(formula = OCIR_tot ~ transporter_fac * risk_c + neur_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-18.618 -6.156 -2.597 4.410 35.306
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.4641 0.9707 12.840 < 2e-16 ***
transporter_fac1 1.3346 1.2614 1.058 0.291
transporter_fac2 1.2938 1.5679 0.825 0.410
risk_c 2.2946 1.5344 1.495 0.136
neur_c 3.7023 0.7139 5.186 4.19e-07 ***
transporter_fac1:risk_c 3.1742 2.0625 1.539 0.125
transporter_fac2:risk_c 2.7155 2.3727 1.144 0.253
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.224 on 273 degrees of freedom
(76 observations deleted due to missingness)
Multiple R-squared: 0.1984, Adjusted R-squared: 0.1808
F-statistic: 11.26 on 6 and 273 DF, p-value: 3.065e-11
mod5b <- lm(OCIR_tot ~ triallelic_fac*risk_c + neur_c, data=genes)
summary(mod5b)
Call:
lm(formula = OCIR_tot ~ triallelic_fac * risk_c + neur_c, data = genes)
Residuals:
Min 1Q Median 3Q Max
-19.118 -6.350 -2.285 4.645 35.857
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.6735 1.1621 11.767 < 2e-16 ***
triallelic_fac1 -0.6156 1.4156 -0.435 0.664
triallelic_fac2 0.1228 1.5624 0.079 0.937
risk_c 2.8428 1.8205 1.562 0.120
neur_c 3.9457 0.7208 5.474 1.01e-07 ***
triallelic_fac1:risk_c 1.3814 2.2476 0.615 0.539
triallelic_fac2:risk_c 2.3625 2.4282 0.973 0.331
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.245 on 269 degrees of freedom
(80 observations deleted due to missingness)
Multiple R-squared: 0.1942, Adjusted R-squared: 0.1762
F-statistic: 10.81 on 6 and 269 DF, p-value: 9.022e-11
Nonsignificant results in OCIR models suggesting that GxE effects seem to be specific to hoarding.