There are 10 CS majors and 20 SE majors.
How many ways are there to pick 4 representatives, two from CS students and 2 from SE students?
How many ways are there to pick 4 representatives from all CS and SE students?
A new 10-storey building has 30 windows on each floor. How many windows are in the building?
A factory make polo shirts in 12 colors, in male and female versions, and 3 sizes for each sex. How many different types of shirts are made at this factory?
There are 2 flights from Mandalay to Chiang Mai and 9 flights from Chiang Mai to Bangkok. How many ways are there to fly from Mandalay to Bangkok via Chiang Mai?
How many unique license plates can be created using 2 of the 44 Thai characters and 3 numeric digits?
A drawer has 12 socks: 4 are red and 8 are blue. You need to select socks from this drawer in complete darkness.
How many bit strings can be made from 5 binary digits?
How many different wedding photgraphs of six people (including the bride and groom) can be taken where:
the bride stands next to the groom
the bride stands on the left of the groom
the bride does not stand next to the groom
How many kinds of pancakes can be made from 3 types of flour, 3 types of sugar and 2 types of milk?
How many types of subway sandwiches can be made from 5 different kinds of bread, 4 different kinds of sliced meat, 3 different sauces and any selection of 3 vegetables from a range of 10?
asked about all 3 # Combinations
How many way scan 5 pens be given to 3 students?
How many six letter words could be formed from the word “teethe”?
If you have this map for the paths between A and B, how many paths exist between A and B if one can only go EAST OR North?
\[\begin{array}{c|c|c|c|c|c} & & & & & B \\ \hline & & & & & \\ \hline & & & & & \\ \hline A& & & & & \\ \end{array} \]
For each in the following series:
What is the order of the polynomial that defines these series:
\(1 ,20 ,75 ,184 ,365 ,636 ,1015 ,1520 ,2169\)
\(1 ,15 ,79 ,253 ,621 ,1291 ,2395 ,4089 ,6553\)
\(1 ,3 ,7 ,13 ,21 ,31 ,43 ,57 ,73\)
Calculate the sum of this series of numbers:
\(5 + 10 + 15 + ... + 100 =\)
\(1 + 2 + 4 + 8 + ... + 512 =\)
If on 1 Mar you add 1 baht to your bank account, 2 baht on 2 Mar , 3 baht on 3 Mar and continue like this to the end of the month, how much will you have in the bank on 31 Mar?
The author of TeX gives a reward for every bug found according to this formula: \(Reward_n = 2^{(n-1)}\). So far only 9 bugs have been found.
2 representatives from CS students and 2 from SE:
\[\left({10 \atop 2}\right)\left({20 \atop 2}\right) = {10!\ 20!\over 2! 8! 2! 18!} = 5 \times 9 \times 10 \times 19 = 8550\]
4 representatives from all students:
\[\left({30 \atop4}\right) = {30! \over 4! 26!} = {30 \times 29 \times 28 \times 27\over 4!} = 27,405\]
\[ 10 \times 30 = 300\]
\[12 \times 2 \times 3 = 72\]
Flights from Mandalay to Bangkok via Chiang Mai: \[2 \times 9 = 18\]
Thai license plates:
\[ 44 \times 44 \times 10 \times 10 \times 10 = 1,936,000\]
Sock drawer:
at least 2 blue socks: (All the red plus 2) \[4 + 2 = 6\]
least 2 red socks: (All the blue plus 2) \[8+ 2= 10\]
least 1 red and 1 blue sock: (all red plus one) \[4 + 1= 5\]
\[2 \times 2 \times 2 \times 2 \times 2 = 2^5 = 32\]
Wedding photgraphs:
\[2 \times 5! = 240\]
the bride stands on the left of the groom \[5! = 120\]
the bride does not stand next to the groom (Calculate for each possible combination of bride and groom positions)
\[\begin{array}{c} B4321G + B432G1 + B43G21 + B4G321 + \\ 4B321G + 4B32G1 + 4B3G21 + G4B321 + \\ 43B21G + 43B2G1 + 4G3B21 + G43B21 + \\ 432B1G + 43G2B1 + 4G32B1 + G432B1 + \\ 432G1B + 43G21B + 4G321B + G4321B \\ \end{array}\]
\[ 5 \times 4 \times 4! = 480\]
\[3 \times 3 \times 2= 18\]
\[5 \times 4 \times 3 \right({10 \atop 3}\right) = {60 \times 10!\over 3! 7!} = 10 \times 10 \times 9 \times 8 = 7200\]
\[\left( {(n+r-1)!\over r!(n - 1)! } \right)={(5+3-1)! \over 5! 2!} = {7\times 6 \over 2} = 7 \times 3 = 21\]
\[\begin{array}{|c|c|} \hline *****|-|- & *|****|- \\ & *|***|* \\ ****|*|- & *|**|**\\ ****|-|* & *|*|***\\ & *|-|****\\ ***|**|- & \\ ***|*|* & -|*****|- \\ ***|-|** & -|****|*\\ & -|***|** \\ **|***|- & -|**|*** \\ **|**|* & -|*|**** \\ **|*|** & -|-|***** \\ **|-|*** & \\ \hline \end{array}\]
\[{6! \over 3! 2! 1!} = {6 \times 5 \times 4\over2} = 60\]
eeehtt, eeetht, eeetth, eehett, eehtet, eehtte, eeteht, eeteth, eethet, eethte, eetteh, eetthe, eheett, ehetet, ehette, ehteet, ehtete, ehttee, eteeht, eteeth, etehet, etehte, eteteh, etethe, etheet, ethete, ethtee, etteeh, ettehe, etthee, heeett, heetet, heette, heteet, hetete, hettee, hteeet, hteete, htetee, htteee, teeeht, teeeth, teehet, teehte, teeteh, teethe, teheet, tehete, tehtee, teteeh, tetehe, tethee, theeet, theete, thetee, thteee, tteeeh, tteehe, ttehee, ttheee
\[\begin{array}{c|c|c|c|c|c} & & & & & B \\ \hline & & & & & \\ \hline & & & & & \\ \hline A& & & & & \\ \end{array} \]
\[\left( {6 \atop 2}\right) = {6!\over 2! 4!} = {6 \times 5\over 2} = 15\]
\[\begin{array}{|c|c|c|} \hline EEEENN & EENNEE & NENEEE \\ EEENEN & ENENEE & NEENEE \\ EEENNE & ENEENE & NEEENE \\ EENENE & ENEEEN & NEEEEN \\ EENEEN & ENNEEE & NNEEEE \\ \hline \end{array}\]
\[\left({31 \atop 2}\right) \times 3 = {3 \times 31!\over 2! 29!} = {3 \times 31 \times 30 \over 2} = 93 \times 15 = 1395\]
\[\begin{array}{c} 10 ,17 ,24 ,31 ,38 ,45 ,52 ,59 ,66\\ 7,7,7,7,7,7,7,7\\ \end{array}\]
The recursive definition of the elements \[x_n = x_{n-1} + 7\]
The direct formula for the elements \[x_n = 3 + 7n\]
\(6 ,7 ,10 ,15 ,22 ,31 ,42 ,55 ,70\) \[\begin{array}{c} 6 ,7 ,10 ,15 ,22 ,31 ,42 ,55 ,70\\ 1 , 3, 5 , 7 ,9 ,11 ,13, 15\\ 2,2,2,2,2,2,2\\ \end{array}\]
The recursive definition of the elements \[x_n = 2x_{n-1}+x_{n-2}+ 2\]
The direct formula for the elements
\[\begin{array}{c} y = an^2 + bn + c\\ 6 = a + b + c\\ 7 = 4a + 2b + c\\ 10 = 9a + 3b + c\\ \hline 1 = 3a + b\\ 4 = 8a + 2b\\ \hline 2 = 6a +2b\\ 4 = 8a + 2b\\ \hline 2 = 2a\\ \hline a = 1; b = -2; c = 7\\ x_n = n^2 -2n + 7\\ \end{array}\]
\[\begin{array}{c} 9 ,11 ,13 ,15 ,17 ,19 ,21 ,23 ,25\\ 2,2,2,2,2,2,2,2\\ \end{array}\]
The next expected value in the series: 27
The recursive definition of the elements \[x_n = x_(n-1) + 2\]
The direct formula for the elements \[x_n = 9 + 2(n-1)\] —-
\(3 ,12 ,27 ,48 ,75 ,108 ,147 ,192 ,243\) \[\begin{array}{c} 3 ,12 ,27 ,48 ,75 ,108 ,147 ,192 ,243\\ 9, 15, 21, 27, 33, 39, 45, 51\\ 6, 6, 6 ,6 ,6 ,6 ,6\\ \end{array}\]
The recursive definition of the elements: \[x_n = 2x_{n-1} - x_{n-2} + 6\]
The direct formula for the elements
\[\begin{array}{c} y = an^2 + bn + c\\ \hline 3 = a + b + c\\ 12 = 4a +2b + c\\ 27 = 9a +3b +c\\ \hline 9 = 3a+b\\ 24 = 8a+2b\\ \hline 18 = 6a + 2b\\ 24 = 8a + 2b\\ \hline 6 = 2a\\ a = 3; b = 0; c = 0\\ x_n = 3n^2\\ \end{array}\]
\[\begin{array}{rc} 0 & 1,20,75,184,365,636,1015,1520,2169\\ 1 & 19 55, 109, 181, 271, 379, 505, 649\\ 2 & 36 ,54 ,72 ,90 ,108 ,126, 144\\ 3 & 18 ,18 ,18 ,18 ,18 ,18\\ \end{array}\]
\[\begin{array}{rc} 0& 1 ,15 ,79 ,253 ,621 ,1291 ,2395 ,4089 ,6553\\ 1 & 14 , 64, 174 ,368 , 670 ,1104 ,1694 ,2464\\ 2 & 50 ,110 ,194 ,302 ,434 ,590 ,770\\ 3 & 60, 84, 108, 132, 156, 180\\ 4& 24 ,24 ,24 ,24, 24\\ \end{array}\]
\(1 ,3 ,7 ,13 ,21 ,31 ,43 ,57 ,73\)
\[\begin{array}{rc} 0&1 ,3 ,7 ,13 ,21 ,31 ,43 ,57 ,73\\ 1 & 2 ,4 , 6, 8, 10 ,12 ,14, 16\\ 2 & 2, 2, 2 ,2 ,2 ,2 ,2\\ \end{array}\]
\(5 + 10 + 15 + ... + 100 =\)
\[\left({5+100\over 2}\right)\left({100\over 5}\right)={105 \times 100\over 10}= 1050\]
\(1 + 2 + 4 + 8 + ... + 512 =\)
\[\left({ar^{n+1}-a\over r-1}\right)={2^{10} - 1\over 2-1} = {1024-1\over 1} = 1023\]
\[1+2+3+...+31 = 31\left({1+31\over 2}\right)= 31 \times 16=496\]
TeX Reward:
How much money has the author paid out in rewards? \[{2^{9} -1\over 2-1}={512 -1\over 1}=511\]
How much is the reward for the next bug found? \[Reward_{10} = 2^{(n-1)}= 2^{(10-1)} = 2^9 = 512\]