Reading Dataset into R:

setwd("C:/Office/Capestone Project")
ecommercedata.df <- read.csv(paste("Effect of Price on Order Conversion.csv"),sep = ",")

Viewing the dataset in R:

View(ecommercedata.df)

Descriptive Statistics:

library(psych)
describe(ecommercedata.df[,c(5:10)])
##                                  vars    n     mean        sd  median
## Minimum.Price                       1 1314   612.83   1351.87   348.0
## Maximum.Price                       2 1314   748.56   1646.64   429.0
## Shipping.Fee.Charged.To.Customer    3 1314    65.93     82.77    49.0
## Orders                              4 1314  1741.10   4724.07   454.0
## Product_Visits                      5 1314 69303.72 152102.85 21625.5
## Product.Margin*                     6 1314    23.42     17.72    17.0
##                                   trimmed      mad min     max   range
## Minimum.Price                      383.31   208.31  17   29276   29259
## Maximum.Price                      470.01   257.23  21   35692   35671
## Shipping.Fee.Charged.To.Customer    52.14    29.65   0    1209    1209
## Orders                             830.90   547.82  13   84770   84757
## Product_Visits                   37142.63 26522.97  13 1932477 1932464
## Product.Margin*                     20.97    11.86   1      66      65
##                                   skew kurtosis      se
## Minimum.Price                    12.76   229.49   37.29
## Maximum.Price                    12.79   230.28   45.43
## Shipping.Fee.Charged.To.Customer  5.52    46.37    2.28
## Orders                            8.44   102.75  130.32
## Product_Visits                    6.23    53.96 4196.04
## Product.Margin*                   1.13     0.27    0.49

One Way Contingency Table:

table(ecommercedata.df$Category)
## 
##   a. Electronic Accessories           b. Home Furnishings 
##                          380                          200 
##    c. Footwear (Men & Women) d. Ethnic Wear (Men & Women) 
##                          280                          234 
## e. Home & Kitchen Appliances 
##                          220

Two Way Contingency Table:

table(ecommercedata.df$Category, ecommercedata.df$Shipping.Fee.Charged.To.Customer)
##                               
##                                  0   9  19  29  39  49  59  69  79  89  99
##   a. Electronic Accessories     46  21  16  28  35  51 125  40   5   0   0
##   b. Home Furnishings           47  18  33  26  26  21  11   3   0   2   0
##   c. Footwear (Men & Women)     34   8  17  19  77  91   6  15   2   2   2
##   d. Ethnic Wear (Men & Women)   0   0   1   1   8  27  96  37  17   3   3
##   e. Home & Kitchen Appliances   4   0   1   1   2  12  38  48  12   7   3
##                               
##                                109 119 129 139 149 159 169 179 189 199 209
##   a. Electronic Accessories      0   0   4   1   0   0   0   0   0   0   0
##   b. Home Furnishings            0   1   5   1   1   0   0   0   3   0   0
##   c. Footwear (Men & Women)      0   0   0   3   0   0   0   0   2   1   1
##   d. Ethnic Wear (Men & Women)   3   0  22   6   3   0   1   2   3   0   0
##   e. Home & Kitchen Appliances   3  13  10   5   7   4   7   1   5   2   3
##                               
##                                229 239 249 259 269 289 299 319 339 379 399
##   a. Electronic Accessories      0   1   0   0   0   0   0   0   0   4   1
##   b. Home Furnishings            0   0   0   0   0   1   0   0   0   0   0
##   c. Footwear (Men & Women)      0   0   0   0   0   0   0   0   0   0   0
##   d. Ethnic Wear (Men & Women)   0   0   0   0   0   0   0   1   0   0   0
##   e. Home & Kitchen Appliances   1   1   3   2   4   0   1   1   2   0   0
##                               
##                                409 419 429 489 519 559 599 649 719 739
##   a. Electronic Accessories      2   0   0   0   0   0   0   0   0   0
##   b. Home Furnishings            1   0   0   0   0   0   0   0   0   0
##   c. Footwear (Men & Women)      0   0   0   0   0   0   0   0   0   0
##   d. Ethnic Wear (Men & Women)   0   0   0   0   0   0   0   0   0   0
##   e. Home & Kitchen Appliances   1   2   1   1   4   1   2   1   1   2
##                               
##                                1209
##   a. Electronic Accessories       0
##   b. Home Furnishings             0
##   c. Footwear (Men & Women)       0
##   d. Ethnic Wear (Men & Women)    0
##   e. Home & Kitchen Appliances    1

BoxPlot:

boxplot(ecommercedata.df$Minimum.Price~ecommercedata.df$Category,main= "Minimum Price per Category",ylab="Category",xlab="Minimum Price ", horizontal = TRUE)

boxplot(ecommercedata.df$Maximum.Price~ecommercedata.df$Category,main= "Maximum Price per Category",ylab="Category",xlab="Maximum Price ", horizontal = TRUE)

Histograms:

hist(ecommercedata.df$Product_Visits, breaks = 10000, xlim=c(0,20000), col="red")

hist(ecommercedata.df$Orders, breaks = 1000, xlim=c(0,5000), col="green")

Correlation Matrix:

 ecommercenumerical <-ecommercedata.df[,c(5:9)]
cor(ecommercenumerical)
##                                  Minimum.Price Maximum.Price
## Minimum.Price                       1.00000000    0.99998775
## Maximum.Price                       0.99998775    1.00000000
## Shipping.Fee.Charged.To.Customer    0.24575070    0.24398256
## Orders                             -0.08599098   -0.08609678
## Product_Visits                     -0.09005734   -0.08996123
##                                  Shipping.Fee.Charged.To.Customer
## Minimum.Price                                           0.2457507
## Maximum.Price                                           0.2439826
## Shipping.Fee.Charged.To.Customer                        1.0000000
## Orders                                                 -0.1109196
## Product_Visits                                         -0.1004566
##                                       Orders Product_Visits
## Minimum.Price                    -0.08599098    -0.09005734
## Maximum.Price                    -0.08609678    -0.08996123
## Shipping.Fee.Charged.To.Customer -0.11091960    -0.10045665
## Orders                            1.00000000     0.86298159
## Product_Visits                    0.86298159     1.00000000

Visualizing using Corrgram:

library(corrgram)
corrgram(ecommercenumerical)

Scatterplot:

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(ecommercedata.df$Minimum.Price~ecommercedata.df$Orders, ylim= c(0,2000), xlim=c(0,50000))

scatterplot(ecommercedata.df$Maximum.Price~ecommercedata.df$Orders, ylim= c(0,2000), xlim=c(0,50000))

High Minimum and Maximum Price results in less conversion of the item orders from visits.

T-tests:

t.test(ecommercedata.df$Minimum.Price,ecommercedata.df$Orders)
## 
##  Welch Two Sample t-test
## 
## data:  ecommercedata.df$Minimum.Price and ecommercedata.df$Orders
## t = -8.3235, df = 1526.6, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1394.1640  -862.3824
## sample estimates:
## mean of x mean of y 
##  612.8295 1741.1027