Page 460, Exercise C25
\(T: \mathbb{C}^3 \to \mathbb{C}^2, \hspace{2mm} T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}2x_1 - x_2 + 5x_3\\ -4x_1 + 2x_2 - 10x_3\end{bmatrix}\).
Find a basis for the kernel of \(T, \ \mathcal{K}(T)\). Is \(T\) injective?
Set \(T(x) = 0\), and then row reduce.
\[ \left[\begin{array}{ccc|c} 2 & -1 & 5 & 0 \\ -4 & 2 & -10 & 0 \end{array} \right] \]
library(pracma)
A <- matrix(c(2, -1, 5, 0,
-4, 2, -10, 0),
nrow = 2, ncol = 4, byrow = T)
a <- rref(A)
a## [,1] [,2] [,3] [,4]
## [1,] 1 -0.5 2.5 0
## [2,] 0 0.0 0.0 0
Which gives us the system of equations:
\[\begin{align*} x_1 - \frac{1}{2}x_2 + \frac{5}{2}x_3 &= 0 \\ 0 &= 0 \end{align*}\]So \(x_1 = \frac{1}{2}x_2 - \frac{5}{2}x_3\), with \(x_2\) and \(x_3\) being free variables.
Thus, the basis set for the null space is \(\left\{\begin{bmatrix}\frac{1}{2}\\1\\0\end{bmatrix}, \begin{bmatrix}\frac{-5}{2}\\0\\1\end{bmatrix}\right\}\)
Theorem KILT says \(T\) is injective iff \(\mathcal{K}(T)=\{0\}\).
Since the kernel is not trivial, i.e. \(\mathcal{K}(T)\neq\{0\}, \ T\) is not injective.