data1<-read.csv(file="E://Columbia Spring Semester//Housing_prices_data.csv")
library(tidyverse)
## -- Attaching packages --------------------------------------------------------------- tidyverse 1.2.1 --
## √ ggplot2 2.2.1 √ purrr 0.2.4
## √ tibble 1.4.2 √ dplyr 0.7.4
## √ tidyr 0.8.0 √ stringr 1.2.0
## √ readr 1.1.1 √ forcats 0.2.0
## -- Conflicts ------------------------------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
housing<-as.tibble(data1)
keep(housing, is.factor)
## # A tibble: 1,460 x 43
## MSZoning Street Alley LotShape LandContour Utilities LotConfig
## <fct> <fct> <fct> <fct> <fct> <fct> <fct>
## 1 RL Pave <NA> Reg Lvl AllPub Inside
## 2 RL Pave <NA> Reg Lvl AllPub FR2
## 3 RL Pave <NA> IR1 Lvl AllPub Inside
## 4 RL Pave <NA> IR1 Lvl AllPub Corner
## 5 RL Pave <NA> IR1 Lvl AllPub FR2
## 6 RL Pave <NA> IR1 Lvl AllPub Inside
## 7 RL Pave <NA> Reg Lvl AllPub Inside
## 8 RL Pave <NA> IR1 Lvl AllPub Corner
## 9 RM Pave <NA> Reg Lvl AllPub Inside
## 10 RL Pave <NA> Reg Lvl AllPub Corner
## # ... with 1,450 more rows, and 36 more variables: LandSlope <fct>,
## # Neighborhood <fct>, Condition1 <fct>, Condition2 <fct>,
## # BldgType <fct>, HouseStyle <fct>, RoofStyle <fct>, RoofMatl <fct>,
## # Exterior1st <fct>, Exterior2nd <fct>, MasVnrType <fct>,
## # ExterQual <fct>, ExterCond <fct>, Foundation <fct>, BsmtQual <fct>,
## # BsmtCond <fct>, BsmtExposure <fct>, BsmtFinType1 <fct>,
## # BsmtFinType2 <fct>, Heating <fct>, HeatingQC <fct>, CentralAir <fct>,
## # Electrical <fct>, KitchenQual <fct>, Functional <fct>,
## # FireplaceQu <fct>, GarageType <fct>, GarageFinish <fct>,
## # GarageQual <fct>, GarageCond <fct>, PavedDrive <fct>, PoolQC <fct>,
## # Fence <fct>, MiscFeature <fct>, SaleType <fct>, SaleCondition <fct>
keep(housing, is.numeric)
## # A tibble: 1,460 x 38
## Id MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt
## <int> <int> <int> <int> <int> <int> <int>
## 1 1 60 65 8450 7 5 2003
## 2 2 20 80 9600 6 8 1976
## 3 3 60 68 11250 7 5 2001
## 4 4 70 60 9550 7 5 1915
## 5 5 60 84 14260 8 5 2000
## 6 6 50 85 14115 5 5 1993
## 7 7 20 75 10084 8 5 2004
## 8 8 60 NA 10382 7 6 1973
## 9 9 50 51 6120 7 5 1931
## 10 10 190 50 7420 5 6 1939
## # ... with 1,450 more rows, and 31 more variables: YearRemodAdd <int>,
## # MasVnrArea <int>, BsmtFinSF1 <int>, BsmtFinSF2 <int>, BsmtUnfSF <int>,
## # TotalBsmtSF <int>, X1stFlrSF <int>, X2ndFlrSF <int>,
## # LowQualFinSF <int>, GrLivArea <int>, BsmtFullBath <int>,
## # BsmtHalfBath <int>, FullBath <int>, HalfBath <int>,
## # BedroomAbvGr <int>, KitchenAbvGr <int>, TotRmsAbvGrd <int>,
## # Fireplaces <int>, GarageYrBlt <int>, GarageCars <int>,
## # GarageArea <int>, WoodDeckSF <int>, OpenPorchSF <int>,
## # EnclosedPorch <int>, X3SsnPorch <int>, ScreenPorch <int>,
## # PoolArea <int>, MiscVal <int>, MoSold <int>, YrSold <int>,
## # SalePrice <int>
keep(housing, is.logical)
## # A tibble: 1,460 x 0
dataset2<-keep(housing, is.numeric)
apply(dataset2,2,mean,na.rm=TRUE)
## Id MSSubClass LotFrontage LotArea OverallQual
## 7.305000e+02 5.689726e+01 7.004996e+01 1.051683e+04 6.099315e+00
## OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1
## 5.575342e+00 1.971268e+03 1.984866e+03 1.036853e+02 4.436397e+02
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF X1stFlrSF X2ndFlrSF
## 4.654932e+01 5.672404e+02 1.057429e+03 1.162627e+03 3.469925e+02
## LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath
## 5.844521e+00 1.515464e+03 4.253425e-01 5.753425e-02 1.565068e+00
## HalfBath BedroomAbvGr KitchenAbvGr TotRmsAbvGrd Fireplaces
## 3.828767e-01 2.866438e+00 1.046575e+00 6.517808e+00 6.130137e-01
## GarageYrBlt GarageCars GarageArea WoodDeckSF OpenPorchSF
## 1.978506e+03 1.767123e+00 4.729801e+02 9.424452e+01 4.666027e+01
## EnclosedPorch X3SsnPorch ScreenPorch PoolArea MiscVal
## 2.195411e+01 3.409589e+00 1.506096e+01 2.758904e+00 4.348904e+01
## MoSold YrSold SalePrice
## 6.321918e+00 2.007816e+03 1.809212e+05
library(tidyverse)
housing<-as.tibble(housing)
list_housing<-as.list(housing)
a<-pluck(list_housing,"SalePrice")
b<-pluck(list_housing,"BldgType")
append(a,b)
## [1] 208500 181500 223500 140000 250000 143000 307000 200000 129900
## [10] 118000 129500 345000 144000 279500 157000 132000 149000 90000
## [19] 159000 139000 325300 139400 230000 129900 154000 256300 134800
## [28] 306000 207500 68500 40000 149350 179900 165500 277500 309000
## [37] 145000 153000 109000 82000 160000 170000 144000 130250 141000
## [46] 319900 239686 249700 113000 127000 177000 114500 110000 385000
## [55] 130000 180500 172500 196500 438780 124900 158000 101000 202500
## [64] 140000 219500 317000 180000 226000 80000 225000 244000 129500
## [73] 185000 144900 107400 91000 135750 127000 136500 110000 193500
## [82] 153500 245000 126500 168500 260000 174000 164500 85000 123600
## [91] 109900 98600 163500 133900 204750 185000 214000 94750 83000
## [100] 128950 205000 178000 118964 198900 169500 250000 100000 115000
## [109] 115000 190000 136900 180000 383970 217000 259500 176000 139000
## [118] 155000 320000 163990 180000 100000 136000 153900 181000 84500
## [127] 128000 87000 155000 150000 226000 244000 150750 220000 180000
## [136] 174000 143000 171000 230000 231500 115000 260000 166000 204000
## [145] 125000 130000 105000 222500 141000 115000 122000 372402 190000
## [154] 235000 125000 79000 109500 269500 254900 320000 162500 412500
## [163] 220000 103200 152000 127500 190000 325624 183500 228000 128500
## [172] 215000 239000 163000 184000 243000 211000 172500 501837 100000
## [181] 177000 200100 120000 200000 127000 475000 173000 135000 153337
## [190] 286000 315000 184000 192000 130000 127000 148500 311872 235000
## [199] 104000 274900 140000 171500 112000 149000 110000 180500 143900
## [208] 141000 277000 145000 98000 186000 252678 156000 161750 134450
## [217] 210000 107000 311500 167240 204900 200000 179900 97000 386250
## [226] 112000 290000 106000 125000 192500 148000 403000 94500 128200
## [235] 216500 89500 185500 194500 318000 113000 262500 110500 79000
## [244] 120000 205000 241500 137000 140000 180000 277000 76500 235000
## [253] 173000 158000 145000 230000 207500 220000 231500 97000 176000
## [262] 276000 151000 130000 73000 175500 185000 179500 120500 148000
## [271] 266000 241500 290000 139000 124500 205000 201000 141000 415298
## [280] 192000 228500 185000 207500 244600 179200 164700 159000 88000
## [289] 122000 153575 233230 135900 131000 235000 167000 142500 152000
## [298] 239000 175000 158500 157000 267000 205000 149900 295000 305900
## [307] 225000 89500 82500 360000 165600 132000 119900 375000 178000
## [316] 188500 260000 270000 260000 187500 342643 354000 301000 126175
## [325] 242000 87000 324000 145250 214500 78000 119000 139000 284000
## [334] 207000 192000 228950 377426 214000 202500 155000 202900 82000
## [343] 87500 266000 85000 140200 151500 157500 154000 437154 318061
## [352] 190000 95000 105900 140000 177500 173000 134000 130000 280000
## [361] 156000 145000 198500 118000 190000 147000 159000 165000 132000
## [370] 162000 172400 134432 125000 123000 219500 61000 148000 340000
## [379] 394432 179000 127000 187750 213500 76000 240000 192000 81000
## [388] 125000 191000 426000 119000 215000 106500 100000 109000 129000
## [397] 123000 169500 67000 241000 245500 164990 108000 258000 168000
## [406] 150000 115000 177000 280000 339750 60000 145000 222000 115000
## [415] 228000 181134 149500 239000 126000 142000 206300 215000 113000
## [424] 315000 139000 135000 275000 109008 195400 175000 85400 79900
## [433] 122500 181000 81000 212000 116000 119000 90350 110000 555000
## [442] 118000 162900 172500 210000 127500 190000 199900 119500 120000
## [451] 110000 280000 204000 210000 188000 175500 98000 256000 161000
## [460] 110000 263435 155000 62383 188700 124000 178740 167000 146500
## [469] 250000 187000 212000 190000 148000 440000 251000 132500 208900
## [478] 380000 297000 89471 326000 374000 155000 164000 132500 147000
## [487] 156000 175000 160000 86000 115000 133000 172785 155000 91300
## [496] 34900 430000 184000 130000 120000 113000 226700 140000 289000
## [505] 147000 124500 215000 208300 161000 124500 164900 202665 129900
## [514] 134000 96500 402861 158000 265000 211000 234000 106250 150000
## [523] 159000 184750 315750 176000 132000 446261 86000 200624 175000
## [532] 128000 107500 39300 178000 107500 188000 111250 158000 272000
## [541] 315000 248000 213250 133000 179665 229000 210000 129500 125000
## [550] 263000 140000 112500 255500 108000 284000 113000 141000 108000
## [559] 175000 234000 121500 170000 108000 185000 268000 128000 325000
## [568] 214000 316600 135960 142600 120000 224500 170000 139000 118500
## [577] 145000 164500 146000 131500 181900 253293 118500 325000 133000
## [586] 369900 130000 137000 143000 79500 185900 451950 138000 140000
## [595] 110000 319000 114504 194201 217500 151000 275000 141000 220000
## [604] 151000 221000 205000 152000 225000 359100 118500 313000 148000
## [613] 261500 147000 75500 137500 183200 105500 314813 305000 67000
## [622] 240000 135000 168500 165150 160000 139900 153000 135000 168500
## [631] 124000 209500 82500 139400 144000 200000 60000 93000 85000
## [640] 264561 274000 226000 345000 152000 370878 143250 98300 155000
## [649] 155000 84500 205950 108000 191000 135000 350000 88000 145500
## [658] 149000 97500 167000 197900 402000 110000 137500 423000 230500
## [667] 129000 193500 168000 137500 173500 103600 165000 257500 140000
## [676] 148500 87000 109500 372500 128500 143000 159434 173000 285000
## [685] 221000 207500 227875 148800 392000 194700 141000 755000 335000
## [694] 108480 141500 176000 89000 123500 138500 196000 312500 140000
## [703] 361919 140000 213000 55000 302000 254000 179540 109900 52000
## [712] 102776 189000 129000 130500 165000 159500 157000 341000 128500
## [721] 275000 143000 124500 135000 320000 120500 222000 194500 110000
## [730] 103000 236500 187500 222500 131400 108000 163000 93500 239900
## [739] 179000 190000 132000 142000 179000 175000 180000 299800 236000
## [748] 265979 260400 98000 96500 162000 217000 275500 156000 172500
## [757] 212000 158900 179400 290000 127500 100000 215200 337000 270000
## [766] 264132 196500 160000 216837 538000 134900 102000 107000 114500
## [775] 395000 162000 221500 142500 144000 135000 176000 175900 187100
## [784] 165500 128000 161500 139000 233000 107900 187500 160200 146800
## [793] 269790 225000 194500 171000 143500 110000 485000 175000 200000
## [802] 109900 189000 582933 118000 227680 135500 223500 159950 106000
## [811] 181000 144500 55993 157900 116000 224900 137000 271000 155000
## [820] 224000 183000 93000 225000 139500 232600 385000 109500 189000
## [829] 185000 147400 166000 151000 237000 167000 139950 128000 153500
## [838] 100000 144000 130500 140000 157500 174900 141000 153900 171000
## [847] 213000 133500 240000 187000 131500 215000 164000 158000 170000
## [856] 127000 147000 174000 152000 250000 189950 131500 152000 132500
## [865] 250580 148500 248900 129000 169000 236000 109500 200500 116000
## [874] 133000 66500 303477 132250 350000 148000 136500 157000 187500
## [883] 178000 118500 100000 328900 145000 135500 268000 149500 122900
## [892] 172500 154500 165000 118858 140000 106500 142953 611657 135000
## [901] 110000 153000 180000 240000 125500 128000 255000 250000 131000
## [910] 174000 154300 143500 88000 145000 173733 75000 35311 135000
## [919] 238000 176500 201000 145900 169990 193000 207500 175000 285000
## [928] 176000 236500 222000 201000 117500 320000 190000 242000 79900
## [937] 184900 253000 239799 244400 150900 214000 150000 143000 137500
## [946] 124900 143000 270000 192500 197500 129000 119900 133900 172000
## [955] 127500 145000 124000 132000 185000 155000 116500 272000 155000
## [964] 239000 214900 178900 160000 135000 37900 140000 135000 173000
## [973] 99500 182000 167500 165000 85500 199900 110000 139000 178400
## [982] 336000 159895 255900 126000 125000 117000 395192 195000 197000
## [991] 348000 168000 187000 173900 337500 121600 136500 185000 91000
## [1000] 206000 82000 86000 232000 136905 181000 149900 163500 88000
## [1009] 240000 102000 135000 100000 165000 85000 119200 227000 203000
## [1018] 187500 160000 213490 176000 194000 87000 191000 287000 112500
## [1027] 167500 293077 105000 118000 160000 197000 310000 230000 119750
## [1036] 84000 315500 287000 97000 80000 155000 173000 196000 262280
## [1045] 278000 139600 556581 145000 115000 84900 176485 200141 165000
## [1054] 144500 255000 180000 185850 248000 335000 220000 213500 81000
## [1063] 90000 110500 154000 328000 178000 167900 151400 135000 135000
## [1072] 154000 91500 159500 194000 219500 170000 138800 155900 126000
## [1081] 145000 133000 192000 160000 187500 147000 83500 252000 137500
## [1090] 197000 92900 160000 136500 146000 129000 176432 127000 170000
## [1099] 128000 157000 60000 119500 135000 159500 106000 325000 179900
## [1108] 274725 181000 280000 188000 205000 129900 134500 117000 318000
## [1117] 184100 130000 140000 133700 118400 212900 112000 118000 163900
## [1126] 115000 174000 259000 215000 140000 135000 93500 117500 239500
## [1135] 169000 102000 119000 94000 196000 144000 139000 197500 424870
## [1144] 80000 80000 149000 180000 174500 116900 143000 124000 149900
## [1153] 230000 120500 201800 218000 179900 230000 235128 185000 146000
## [1162] 224000 129000 108959 194000 233170 245350 173000 235000 625000
## [1171] 171000 163000 171900 200500 239000 285000 119500 115000 154900
## [1180] 93000 250000 392500 745000 120000 186700 104900 95000 262000
## [1189] 195000 189000 168000 174000 125000 165000 158000 176000 219210
## [1198] 144000 178000 148000 116050 197900 117000 213000 153500 271900
## [1207] 107000 200000 140000 290000 189000 164000 113000 145000 134500
## [1216] 125000 112000 229456 80500 91500 115000 134000 143000 137900
## [1225] 184000 145000 214000 147000 367294 127000 190000 132500 101800
## [1234] 142000 130000 138887 175500 195000 142500 265900 224900 248328
## [1243] 170000 465000 230000 178000 186500 169900 129500 119000 244000
## [1252] 171750 130000 294000 165400 127500 301500 99900 190000 151000
## [1261] 181000 128900 161500 180500 181000 183900 122000 378500 381000
## [1270] 144000 260000 185750 137000 177000 139000 137000 162000 197900
## [1279] 237000 68400 227000 180000 150500 139000 169000 132500 143000
## [1288] 190000 278000 281000 180500 119500 107500 162900 115000 138500
## [1297] 155000 140000 160000 154000 225000 177500 290000 232000 130000
## [1306] 325000 202500 138000 147000 179200 335000 203000 302000 333168
## [1315] 119000 206900 295493 208900 275000 111000 156500 72500 190000
## [1324] 82500 147000 55000 79000 130500 256000 176500 227000 132500
## [1333] 100000 125500 125000 167900 135000 52500 200000 128500 123000
## [1342] 155000 228500 177000 155835 108500 262500 283463 215000 122000
## [1351] 200000 171000 134900 410000 235000 170000 110000 149900 177500
## [1360] 315000 189000 260000 104900 156932 144152 216000 193000 127000
## [1369] 144000 232000 105000 165500 274300 466500 250000 239000 91000
## [1378] 117000 83000 167500 58500 237500 157000 112000 105000 125500
## [1387] 250000 136000 377500 131000 235000 124000 123000 163000 246578
## [1396] 281213 160000 137500 138000 137450 120000 193000 193879 282922
## [1405] 105000 275000 133000 112000 125500 215000 230000 140000 90000
## [1414] 257000 207000 175900 122500 340000 124000 223000 179900 127500
## [1423] 136500 274970 144000 142000 271000 140000 119000 182900 192140
## [1432] 143750 64500 186500 160000 174000 120500 394617 149700 197000
## [1441] 191000 149300 310000 121000 179600 129000 157900 240000 112000
## [1450] 92000 136000 287090 145000 84500 185000 175000 210000 266500
## [1459] 142125 147500 1 1 1 1 1 1 1
## [1468] 1 1 2 1 1 1 1 1 1
## [1477] 1 3 1 1 1 1 1 5 1
## [1486] 1 1 1 1 1 1 1 1 1
## [1495] 5 1 1 1 1 3 1 1 1
## [1504] 1 1 5 1 1 2 1 1 1
## [1513] 3 1 1 1 4 1 1 1 1
## [1522] 1 5 1 1 1 1 1 1 1
## [1531] 1 1 1 1 1 4 1 1 3
## [1540] 1 1 5 1 1 1 1 1 5
## [1549] 1 1 1 1 1 2 1 1 1
## [1558] 1 1 1 1 1 3 1 1 1
## [1567] 1 1 1 1 1 1 1 1 1
## [1576] 5 1 1 1 1 1 1 1 5
## [1585] 1 2 5 1 1 1 1 1 1
## [1594] 1 1 1 1 3 1 1 1 1
## [1603] 1 1 3 4 1 1 1 1 1
## [1612] 1 1 1 1 1 1 1 1 1
## [1621] 1 1 1 1 1 2 1 1 1
## [1630] 1 1 1 5 1 1 1 1 1
## [1639] 1 1 4 1 1 1 1 1 1
## [1648] 1 3 5 1 1 1 4 1 4
## [1657] 1 1 1 1 1 1 1 5 1
## [1666] 1 1 1 1 1 1 1 1 1
## [1675] 1 1 1 1 1 5 1 1 1
## [1684] 1 1 4 1 4 1 5 1 1
## [1693] 4 1 1 5 1 1 1 1 1
## [1702] 1 1 5 1 1 2 1 1 1
## [1711] 1 5 1 1 1 1 1 1 1
## [1720] 1 1 1 1 1 1 1 1 1
## [1729] 1 1 1 1 1 1 1 1 1
## [1738] 1 1 1 1 1 4 1 5 5
## [1747] 1 1 1 1 1 2 1 1 1
## [1756] 1 1 1 1 1 2 1 1 1
## [1765] 1 1 1 1 1 1 1 1 2
## [1774] 1 1 1 1 1 1 1 1 1
## [1783] 1 1 1 1 5 1 1 1 3
## [1792] 1 1 5 1 2 1 1 1 1
## [1801] 1 1 3 5 5 1 1 1 4
## [1810] 1 5 1 1 1 1 1 1 5
## [1819] 1 1 1 1 1 4 1 1 1
## [1828] 1 1 1 1 1 5 1 1 1
## [1837] 1 1 1 1 1 1 1 1 1
## [1846] 5 1 1 1 1 1 1 1 1
## [1855] 1 1 1 1 1 1 5 1 1
## [1864] 1 1 1 1 1 1 1 1 2
## [1873] 1 1 1 1 1 1 1 1 3
## [1882] 1 1 1 1 1 1 1 1 1
## [1891] 4 1 5 1 4 1 1 1 1
## [1900] 1 1 3 1 5 1 1 1 1
## [1909] 1 1 1 1 1 1 3 1 1
## [1918] 1 1 1 1 1 1 1 1 5
## [1927] 1 1 1 1 5 1 5 1 5
## [1936] 1 1 1 1 1 1 1 1 4
## [1945] 1 1 1 1 2 4 5 1 1
## [1954] 1 1 1 1 1 1 1 4 1
## [1963] 1 1 5 3 1 1 1 1 1
## [1972] 5 1 1 1 1 1 1 1 1
## [1981] 2 1 1 1 1 1 1 1 1
## [1990] 1 1 1 1 1 1 2 1 1
## [1999] 1 1 1 1 1 5 1 1 1
## [2008] 1 1 1 5 1 1 1 1 1
## [2017] 1 1 1 5 1 1 1 1 1
## [2026] 1 1 1 1 3 3 1 1 1
## [2035] 1 1 1 1 5 1 1 1 3
## [2044] 1 1 1 1 1 1 1 1 1
## [2053] 1 5 1 1 1 5 1 4 1
## [2062] 1 1 5 1 1 1 1 1 1
## [2071] 1 1 1 1 5 1 1 1 1
## [2080] 1 1 1 1 5 1 1 1 1
## [2089] 1 1 1 4 1 1 3 2 1
## [2098] 2 1 5 5 1 1 1 1 1
## [2107] 1 1 1 4 1 1 1 1 1
## [2116] 4 1 1 1 1 1 1 1 1
## [2125] 1 1 1 1 1 1 1 1 1
## [2134] 1 1 4 1 1 1 1 5 1
## [2143] 1 1 1 5 1 5 1 5 5
## [2152] 1 1 1 1 1 1 1 1 5
## [2161] 1 1 1 2 1 2 1 5 1
## [2170] 1 1 1 5 2 1 1 1 1
## [2179] 1 1 1 5 1 1 1 1 1
## [2188] 1 3 1 5 1 1 1 1 1
## [2197] 3 1 3 1 1 1 1 1 5
## [2206] 1 1 1 1 1 1 1 1 1
## [2215] 1 5 1 1 4 1 1 1 1
## [2224] 1 5 1 1 1 1 1 1 1
## [2233] 1 1 1 5 1 1 3 3 1
## [2242] 1 1 1 1 1 1 1 1 1
## [2251] 5 1 1 1 1 1 1 1 1
## [2260] 1 1 1 1 1 1 1 1 1
## [2269] 1 1 1 5 1 1 1 1 1
## [2278] 1 1 5 1 2 1 1 1 1
## [2287] 1 1 1 4 1 5 1 1 1
## [2296] 1 1 4 1 1 1 1 1 3
## [2305] 1 1 1 1 1 1 5 5 1
## [2314] 1 1 1 1 1 1 1 1 2
## [2323] 1 1 1 1 1 1 1 1 1
## [2332] 1 1 1 1 1 1 1 1 1
## [2341] 1 1 1 1 1 5 3 1 1
## [2350] 1 1 1 1 1 3 1 1 3
## [2359] 1 1 1 1 1 1 1 1 1
## [2368] 1 1 1 3 1 1 3 5 4
## [2377] 1 1 1 1 1 3 1 5 1
## [2386] 1 1 1 1 1 1 1 1 1
## [2395] 1 1 1 1 1 1 3 1 3
## [2404] 3 1 1 1 1 1 1 1 1
## [2413] 1 1 3 3 5 1 1 4 1
## [2422] 1 5 1 1 1 1 1 1 2
## [2431] 1 4 5 1 1 4 1 5 1
## [2440] 1 1 1 1 1 3 2 1 1
## [2449] 1 1 1 1 1 1 1 1 1
## [2458] 1 1 1 1 1 1 3 5 1
## [2467] 1 5 1 1 1 3 1 1 1
## [2476] 1 1 5 1 5 1 1 1 5
## [2485] 1 1 1 1 1 4 2 1 1
## [2494] 1 1 1 1 1 4 5 1 1
## [2503] 4 1 1 1 1 1 1 1 1
## [2512] 1 1 1 1 1 5 1 1 1
## [2521] 5 1 2 1 1 1 1 1 5
## [2530] 1 1 1 1 1 1 1 1 1
## [2539] 5 1 1 1 1 1 1 1 5
## [2548] 1 4 5 3 4 1 1 1 1
## [2557] 1 5 1 1 1 1 1 1 5
## [2566] 1 1 1 1 1 1 1 1 1
## [2575] 1 1 1 1 1 1 1 1 1
## [2584] 1 1 1 5 1 1 3 1 1
## [2593] 1 1 1 1 1 1 1 1 1
## [2602] 1 1 1 2 1 1 1 1 1
## [2611] 1 1 1 1 1 1 1 4 1
## [2620] 1 4 1 1 3 1 1 1 1
## [2629] 1 1 1 1 5 1 1 1 1
## [2638] 1 1 1 1 5 1 1 1 1
## [2647] 2 1 1 1 2 4 1 5 1
## [2656] 1 1 1 1 1 1 1 1 1
## [2665] 1 1 1 1 1 1 1 1 1
## [2674] 1 1 1 3 1 1 4 1 1
## [2683] 1 1 1 1 1 1 5 1 3
## [2692] 3 3 1 1 1 4 1 1 1
## [2701] 1 1 1 1 1 1 1 1 1
## [2710] 1 1 5 1 1 1 1 1 1
## [2719] 1 1 1 1 1 1 5 5 2
## [2728] 1 1 1 1 1 1 1 1 3
## [2737] 1 1 1 1 1 1 1 3 1
## [2746] 1 1 1 5 1 1 4 1 1
## [2755] 1 1 1 5 1 1 1 1 1
## [2764] 1 5 1 5 1 1 1 1 1
## [2773] 1 1 1 1 1 5 1 1 1
## [2782] 1 1 1 1 1 1 1 1 1
## [2791] 1 1 1 1 5 1 3 1 1
## [2800] 1 1 1 1 1 1 1 1 1
## [2809] 1 1 3 1 1 1 1 1 1
## [2818] 1 4 1 1 1 1 1 5 1
## [2827] 1 5 5 1 1 1 1 1 1
## [2836] 1 1 1 4 1 1 1 1 1
## [2845] 1 1 1 1 1 1 1 3 1
## [2854] 2 5 1 1 1 1 1 1 1
## [2863] 1 1 1 5 1 1 1 1 1
## [2872] 1 3 1 1 5 2 1 1 1
## [2881] 1 5 5 1 1 1 1 1 1
## [2890] 1 1 5 1 1 1 1 1 1
## [2899] 1 1 1 5 1 1 1 1 1
## [2908] 1 1 4 3 1 5 1 1 1
## [2917] 1 1 1 1
str(append(a,b))
## int [1:2920] 208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...