1 Introduction

The portfolio is managed by a (ro)bot trading algorithm, to test the trading strategies and the implementation of reinforcement learning. The algorithm autonomously buys and sells according to specific situations and conditions.
The buying and selling strategies are monitored and improved day by day.
The portfolio is composed by stocks traded on the Frankfurt Stock Exchange and the data are downloaded from Quandl.com, which is a platform for financial, economic and alternative data that serves investment professionals.

The portfolio was set up on 2018-02-12 and it is updated until the last trading day.

2 Bot Activity

Report activity of the Bot trading algorithm:

## [1] "On 2019-04-05, the Bot Algorithm did not buy or sell stocks."

 

Performances of the portfolio:

2019-04-05 AmountInvested Delta %Return
771.31 938.83 -167.52 -19.66

 

On 2019-04-05, the portfolio is composed by the following stocks:

Ticks NumberShares lastPrice BuyPrice Delta
DUE 4 39.21 40.11 -3.60
GMM 3 36.35 63.6 -81.75
GWI1 390 0.40 0.51 -42.90
PFV 1 149.00 154.3 -5.30
TEG 5 21.30 15.04 31.30
ZO1 1 94.50 180.6 -86.10

3 Trading history of the Portfolio

The following table displays the history of the stocks composing the portfolio:

Stock numberShares BuyDate PriceBuy SellDate PriceSell
EON 10 2018-02-12 8.02 2018-05-30 9.08
SBS 3 2018-02-12 70.5 2018-03-16 70.3
TEG 5 2018-02-12 15.04
FME 2 2018-02-12 85.28 2018-03-06 83.44
AIR 2 2018-02-22 97.71 2018-03-05 93.89
AIXA 14 2018-02-23 13.65 2018-04-05 14.62
SKYD 13 2018-03-06 15.37 2018-03-07 15.3
AB1 4319 2018-03-08 0.05 2018-03-19 0.04
B5A 8 2018-03-12 23.85 2018-03-21 20.2
RWE 10 2018-03-16 19.82 2018-03-27 19.68
MOR 2 2018-03-19 83.9 2018-03-28 84.15
SGL 16 2018-03-21 12.23 2018-08-15 11.95
WAC 7 2018-03-27 27.68 2018-04-11 27.8
ADS 1 2018-04-05 197.8 2018-04-26 202.3
HOT 1 2018-04-11 150 2018-05-07 151.3
RHM 1 2018-04-12 117.05 2018-05-09 117.1
WCH 1 2018-04-26 143.7 2018-05-14 151.4
WDI 1 2018-05-07 117.65 2018-05-24 126.65
ZO1 1 2018-05-08 180.6
SIX2 1 2018-05-14 114.2 2018-08-21 115.4
PFV 1 2018-05-24 150.4 2018-06-08 154.3
WDI 1 2018-05-30 129.25 2018-06-18 147.5
PFV 1 2018-06-08 154.3
GMM 3 2018-06-18 63.6
SY1 2 2018-08-15 80.4 2018-09-03 80.46
WDI 1 2018-08-21 184.6 2018-09-11 186.25
NEM 1 2018-09-11 143.8 2018-09-20 146.2
DEX 22 2018-09-12 8.86 2018-09-21 8.94
DUE 4 2018-09-21 40.11
QSC 137 2018-09-24 1.46 2018-10-24 1.6
JEN 7 2018-10-24 25.92 2018-11-09 27.76
P1Z 10 2018-11-09 18.44 2019-01-22 18.68
GSC1 7 2019-01-22 25.8 2019-02-26 25.9
GWI1 390 2019-02-26 0.51

4 Outlook of Portfolio

The table shows the portfolio values day by day.

2019-04-05 2019-04-04 2019-04-03 2019-04-02 2019-04-01 2019-03-29 2019-03-28 2019-03-27
771.31 754.58 753.56 736.08 726.24 710.11 710.28 693.33

 

Plot the development of the portfolio.

5 Outlook of stock prices

The table shows day by day the prices and returns of stocks composing the portfolio.

2019-04-05 2019-04-04 2019-04-03 2019-04-02 2019-04-01 2019-03-29 2019-03-28 2019-03-27
TEG price 21.30 21.78 21.76 21.86 21.94 22.00 21.86 21.86
%return -2.23 0.09 -0.46 -0.37 -0.27 0.64 0.00 -0.46
ZO1 price 94.50 100.20 101.20 100.20 98.10 101.60 98.60 99.75
%return -5.86 -0.99 0.99 2.12 -3.51 3.00 -1.16 1.41
PFV price 149.00 149.60 147.80 140.70 142.40 136.40 135.80 133.60
%return -0.40 1.21 4.92 -1.20 4.30 0.44 1.63 -2.66
GMM price 36.35 36.10 36.40 35.30 35.95 34.70 35.26 35.48
%return 0.69 -0.83 3.07 -1.82 3.54 -1.60 -0.62 1.30
DUE price 39.21 38.89 39.27 37.38 36.87 34.96 34.00 34.10
%return 0.82 -0.97 4.93 1.37 5.32 2.78 -0.29 -0.18
GWI1 price 0.40 0.34 0.33 0.33 0.31 0.30 0.32 0.28
%return 16.32 1.94 -0.75 7.77 2.12 -5.46 14.61 2.38

 

Plot the development of the stock prices in the portfolio.

6 Correlation matrix of stock prices

7 Market Risk

The table below displays the Value at Risk (VaR) and the Expected Shortfall (ES) that the portfolio can experience on 2019-04-08 with a probability at 99%.
The risk measures are calculated following a Monte Carlo simulation with a multivariate Student-t distribution.

Risk Measures Values in Euro
VaR 35.71
ES 50.26

7.1 KiloVar calculation

The KiloVaR is a standard and official risk parameter adopted by UniCredit SpA to measure the degree of risk of financial instruments.
It assumes values from 1 to 1000 and lower values express a lower degree of risk.

Methodology KiloVaR
KiloVar UniCredit 113/1000
KiloVaR MonteCarlo 3/1000
KiloVar MonteCarlo NEW 12/1000

Risk classes for the KiloVar parameter:

  1. ZERO RISK : KiloVar = 0
  2. LOW RISK : 1 < KiloVaR <= 7
  3. MIDDLE RISK : 7 < KiloVaR <= 15
  4. RISKY : 15 < KiloVaR <= 27
  5. HIGH RISK : 27 < KiloVaR <= 90
  6. SUPER RISKY : KiloVaR > 90