Question C25
Define the linear transformation:
\(T : \C^3 \rightarrow \C^2\), \[T \left(\begin{array} {rr} x_{1} \\ x_{2} \\ x_{3} \\ \end{array}\right) = \left[\begin{array} {rr} 2x_{1} - x_{2} + 5x{3} \\ -4x_{1} + 2x{2} - 10x{3} \\ \end{array}\right]\]
Find a basis for the kernal of \(T\), \(K(T)\). Is \(T\) injective?
\(T(x) = 0\)
\[\left[\begin{array} {rr} 2x_{1} - x_{2} + 5x{3} \\ -4x_{1} + 2x{2} - 10x{3} \\ \end{array}\right] = \left[\begin{array} {rr} 0 \\ 0 \\ \end{array}\right]\]
First, set both equations to equal zero.
a <- matrix(c(2, -4, -1, 2, 5, -10, 0, 0), ncol = 4, byrow = F)
a
## [,1] [,2] [,3] [,4]
## [1,] 2 -1 5 0
## [2,] -4 2 -10 0
A <-rref(a)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 -0.5 2.5 0
## [2,] 0 0.0 0.0 0
I know from here I’m meant to find the basis for null space, but I’m totally lost on how to do that. Any help would be so appreciated.