C26 † Page 443
Book: Beezer: A First Course in Linear Algebra
Exercise
Verify that the function below is a linear transformation.
\[T:P_2 \rightarrow C^2, T \left( a + bx + cx^2 \right) = \begin{pmatrix}2a - b\\ b + c\end{pmatrix}\]
Solution
For this, we need to verify the two defining conditions of a linear transformation; that is:
- \(T(x + y) = T(x) + T(y)\)
- \(T( \alpha x) = \alpha T(x)\)
1. First let’s work on (1) \(T(x + y) = T(x) + T(y)\).
\[T(x + y) = T \left((a_1 + b_1x + c_1x^2) + (a_2 + b_2x + c_2x^2)\right)\]
\[T(x + y) = T \left((a_1 + a_2) + (b_1 + b_2)x + (c_1+ c_2)x^2\right)\]
Let’s define as follows:
\(a = a_1 + a_2\)
\(b = b_1 + b_2\)
\(c = c_1 + c_2\)
By making a substitution; we have as follows:
\[T(x + y) = T \left((a) + (b)x + (c)x^2\right)\] And by our given problem, we have as follows:
\[T \left( a + bx + cx^2 \right) = \begin{pmatrix}2a - b\\ b + c\end{pmatrix}\]
And by substituting back we have:
\[T(x + y) =\begin{pmatrix}2(a_1 + a_2) - ( b_1 + b_2)\\ ( b_1 + b_2) + (c_1 + c_2)\end{pmatrix}\]
\[T(x + y) =\begin{pmatrix}(2a_1 + 2a_2) - ( b_1 + b_2)\\ ( b_1 + b_2) + (c_1 + c_2)\end{pmatrix}\]
\[T(x + y) =\begin{pmatrix}(2a_1 - b_1) + (2a_2 - b_2)\\ ( b_1 + c_1) + (b_2 + c_2)\end{pmatrix}\]
\[T(x + y) =\begin{pmatrix}(2a_1 - b_1) \\ ( b_1 + c_1) \end{pmatrix} + \begin{pmatrix} (2a_2 - b_2) \\ (b_2 + c_2)\end{pmatrix}\]
\[T(x + y) =\begin{pmatrix}2a_1 - b_1 \\ b_1 + c_1 \end{pmatrix} + \begin{pmatrix} 2a_2 - b_2 \\ b_2 + c_2\end{pmatrix}\]
\[T(x + y) = T \left( a_1 + b_1x + c_1x^2 \right) + T \left( a_2 + b_2x + c_2x^2 \right)\]
\[T(x + y) = T(x) + T(y)\]
This proof the first part of the definition is met.
2. Now, I will focus on (2) \(T( \alpha x) = \alpha T(x)\).
\[T(\alpha x) = T \left( \alpha (a_1 + b_1x + c_1x^2) \right) \]
\[T(\alpha x) = T \left( \alpha a_1 + \alpha b_1x + \alpha c_1x^2 \right) \]
Let’s define as follows:
\(a = \alpha a_1\)
\(b = \alpha b_1\)
\(c = \alpha c_1\)
And by making a substitution we get:
\[T(\alpha x) = T \left( a + bx + cx^2 \right) \]
Given our original equation, we have as follows:
\[T(\alpha x) = \begin{pmatrix}2a - b\\ b + c\end{pmatrix}\]
By replacing back our previous definitions, we get as follows:
\[T(\alpha x) = \begin{pmatrix}2 \alpha a_1 - \alpha b_1\\ \alpha b_1 +\alpha c_1\end{pmatrix}\]
\[T(\alpha x) = \begin{pmatrix} \alpha (2a_1 - b_1)\\ \alpha (b_1 + c_1)\end{pmatrix}\]
\[T(\alpha x) = \alpha \begin{pmatrix} 2a_1 - b_1\\ b_1 + c_1\end{pmatrix}\]
\[T(\alpha x) = \alpha T \left( a + bx + cx^2 \right)\]
\[T(\alpha x) = \alpha T(x)\]
This demonstrates that the second equation is met.
Conclusion:
\[T:P_2 \rightarrow C^2, T \left( a + bx + cx^2 \right) = \begin{pmatrix}2a - b\\ b + c\end{pmatrix}\]
The above function is a linear transformation since the two defining equations are met.