mba <- read.csv(paste("MBA Starting Salaries Data.csv", sep=""))
summary(mba)  
##       age             sex           gmat_tot        gmat_qpc    
##  Min.   :22.00   Min.   :1.000   Min.   :450.0   Min.   :28.00  
##  1st Qu.:25.00   1st Qu.:1.000   1st Qu.:580.0   1st Qu.:72.00  
##  Median :27.00   Median :1.000   Median :620.0   Median :83.00  
##  Mean   :27.36   Mean   :1.248   Mean   :619.5   Mean   :80.64  
##  3rd Qu.:29.00   3rd Qu.:1.000   3rd Qu.:660.0   3rd Qu.:93.00  
##  Max.   :48.00   Max.   :2.000   Max.   :790.0   Max.   :99.00  
##     gmat_vpc        gmat_tpc        s_avg           f_avg      
##  Min.   :16.00   Min.   : 0.0   Min.   :2.000   Min.   :0.000  
##  1st Qu.:71.00   1st Qu.:78.0   1st Qu.:2.708   1st Qu.:2.750  
##  Median :81.00   Median :87.0   Median :3.000   Median :3.000  
##  Mean   :78.32   Mean   :84.2   Mean   :3.025   Mean   :3.062  
##  3rd Qu.:91.00   3rd Qu.:94.0   3rd Qu.:3.300   3rd Qu.:3.250  
##  Max.   :99.00   Max.   :99.0   Max.   :4.000   Max.   :4.000  
##     quarter         work_yrs         frstlang         salary      
##  Min.   :1.000   Min.   : 0.000   Min.   :1.000   Min.   :     0  
##  1st Qu.:1.250   1st Qu.: 2.000   1st Qu.:1.000   1st Qu.:     0  
##  Median :2.000   Median : 3.000   Median :1.000   Median :   999  
##  Mean   :2.478   Mean   : 3.872   Mean   :1.117   Mean   : 39026  
##  3rd Qu.:3.000   3rd Qu.: 4.000   3rd Qu.:1.000   3rd Qu.: 97000  
##  Max.   :4.000   Max.   :22.000   Max.   :2.000   Max.   :220000  
##      satis      
##  Min.   :  1.0  
##  1st Qu.:  5.0  
##  Median :  6.0  
##  Mean   :172.2  
##  3rd Qu.:  7.0  
##  Max.   :998.0
attach(mba)
View(mba)
library(psych)
describe(mba)
##          vars   n     mean       sd median  trimmed     mad min    max
## age         1 274    27.36     3.71     27    26.76    2.97  22     48
## sex         2 274     1.25     0.43      1     1.19    0.00   1      2
## gmat_tot    3 274   619.45    57.54    620   618.86   59.30 450    790
## gmat_qpc    4 274    80.64    14.87     83    82.31   14.83  28     99
## gmat_vpc    5 274    78.32    16.86     81    80.33   14.83  16     99
## gmat_tpc    6 274    84.20    14.02     87    86.12   11.86   0     99
## s_avg       7 274     3.03     0.38      3     3.03    0.44   2      4
## f_avg       8 274     3.06     0.53      3     3.09    0.37   0      4
## quarter     9 274     2.48     1.11      2     2.47    1.48   1      4
## work_yrs   10 274     3.87     3.23      3     3.29    1.48   0     22
## frstlang   11 274     1.12     0.32      1     1.02    0.00   1      2
## salary     12 274 39025.69 50951.56    999 33607.86 1481.12   0 220000
## satis      13 274   172.18   371.61      6    91.50    1.48   1    998
##           range  skew kurtosis      se
## age          26  2.16     6.45    0.22
## sex           1  1.16    -0.66    0.03
## gmat_tot    340 -0.01     0.06    3.48
## gmat_qpc     71 -0.92     0.30    0.90
## gmat_vpc     83 -1.04     0.74    1.02
## gmat_tpc     99 -2.28     9.02    0.85
## s_avg         2 -0.06    -0.38    0.02
## f_avg         4 -2.08    10.85    0.03
## quarter       3  0.02    -1.35    0.07
## work_yrs     22  2.78     9.80    0.20
## frstlang      1  2.37     3.65    0.02
## salary   220000  0.70    -1.05 3078.10
## satis       997  1.77     1.13   22.45
library(lattice)
 histogram(~sex ,main = "Gender Diversity", xlab="Sex", ylab = "Frequency", col='blue' ) 

histogram(~gmat_tot , col='red' ) 

boxplot(age)

histogram(~salary , col='red' ) 

histogram(~satis , col='red' ) 

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(formula=~age + sex +gmat_tot + gmat_qpc + gmat_tpc + gmat_vpc + s_avg + f_avg + quarter + work_yrs + frstlang + salary + satis,cex=0.8)

library(corrgram)
corrgram(mba , order = T, text.panel=panel.txt,lower.panel = panel.shade,upper.panel = panel.pie, main="Corrgram of the variables")

cor(mba)  # only numeric cols
##                  age          sex    gmat_tot    gmat_qpc    gmat_vpc
## age       1.00000000 -0.028106442 -0.14593840 -0.21616985 -0.04417547
## sex      -0.02810644  1.000000000 -0.05336820 -0.16377435  0.07488782
## gmat_tot -0.14593840 -0.053368202  1.00000000  0.72473781  0.74839187
## gmat_qpc -0.21616985 -0.163774346  0.72473781  1.00000000  0.15218014
## gmat_vpc -0.04417547  0.074887816  0.74839187  0.15218014  1.00000000
## gmat_tpc -0.16990307 -0.008090213  0.84779965  0.65137754  0.66621604
## s_avg     0.14970402  0.127115144  0.11311702 -0.02984873  0.20445365
## f_avg    -0.01744806  0.091663891  0.10442409  0.07370455  0.07592225
## quarter  -0.04967221 -0.133533171 -0.09223903  0.03636638 -0.17460736
## work_yrs  0.85829810 -0.011296374 -0.18235434 -0.23660827 -0.06639049
## frstlang  0.05692649  0.001536205 -0.13503402  0.13892774 -0.38980465
## salary   -0.06257355  0.068858628 -0.05497188 -0.04403293 -0.00613934
## satis    -0.12788825 -0.054602220  0.08255770  0.06060004  0.06262375
##              gmat_tpc       s_avg       f_avg       quarter     work_yrs
## age      -0.169903066  0.14970402 -0.01744806 -4.967221e-02  0.858298096
## sex      -0.008090213  0.12711514  0.09166389 -1.335332e-01 -0.011296374
## gmat_tot  0.847799647  0.11311702  0.10442409 -9.223903e-02 -0.182354339
## gmat_qpc  0.651377538 -0.02984873  0.07370455  3.636638e-02 -0.236608270
## gmat_vpc  0.666216035  0.20445365  0.07592225 -1.746074e-01 -0.066390490
## gmat_tpc  1.000000000  0.11736245  0.07973210 -8.303535e-02 -0.173361859
## s_avg     0.117362449  1.00000000  0.55062139 -7.621166e-01  0.129292714
## f_avg     0.079732099  0.55062139  1.00000000 -4.475064e-01 -0.039056921
## quarter  -0.083035351 -0.76211664 -0.44750637  1.000000e+00 -0.086026406
## work_yrs -0.173361859  0.12929271 -0.03905692 -8.602641e-02  1.000000000
## frstlang -0.103362747 -0.13631308 -0.03705695  9.949226e-02 -0.027866747
## salary    0.004930901  0.14583606  0.02944303 -1.643699e-01  0.009023407
## satis     0.092934266 -0.03268664  0.01089273 -1.267198e-05 -0.109255286
##              frstlang       salary         satis
## age       0.056926486 -0.062573547 -1.278882e-01
## sex       0.001536205  0.068858628 -5.460222e-02
## gmat_tot -0.135034017 -0.054971880  8.255770e-02
## gmat_qpc  0.138927742 -0.044032933  6.060004e-02
## gmat_vpc -0.389804653 -0.006139340  6.262375e-02
## gmat_tpc -0.103362747  0.004930901  9.293427e-02
## s_avg    -0.136313080  0.145836062 -3.268664e-02
## f_avg    -0.037056954  0.029443027  1.089273e-02
## quarter   0.099492259 -0.164369865 -1.267198e-05
## work_yrs -0.027866747  0.009023407 -1.092553e-01
## frstlang  1.000000000 -0.086592096  7.932264e-02
## salary   -0.086592096  1.000000000 -3.352171e-01
## satis     0.079322637 -0.335217114  1.000000e+00
mbanew<-mba[which(mba$salary>0),]
detach(mba)
table(mbanew$salary , mbanew$age)
##         
##          22 23 24 25 26 27 28 29 30 31 32 33 34 39 40
##   998     0  0  2 15 11 11  4  0  1  2  0  0  0  0  0
##   999     0  0  2  6  5  7  3  5  3  2  2  0  0  0  0
##   64000   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   77000   0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   78256   0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82000   0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   85000   1  0  0  1  1  1  0  0  0  0  0  0  0  0  0
##   86000   0  0  0  1  1  0  0  0  0  0  0  0  0  0  0
##   88000   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   88500   0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   90000   0  0  0  2  0  1  0  0  0  0  0  0  0  0  0
##   92000   0  0  0  2  0  1  0  0  0  0  0  0  0  0  0
##   93000   0  0  0  1  0  0  1  0  0  1  0  0  0  0  0
##   95000   0  0  1  5  0  0  0  1  0  0  0  0  0  0  0
##   96000   0  0  1  1  2  0  0  0  0  0  0  0  0  0  0
##   96500   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   97000   0  0  0  0  0  1  1  0  0  0  0  0  0  0  0
##   98000   0  1  3  2  1  1  1  1  0  0  0  0  0  0  0
##   99000   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   100000  0  1  4  1  1  1  0  0  0  1  0  0  0  0  0
##   100400  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   101000  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0
##   101100  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   101600  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   102500  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   103000  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   104000  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0
##   105000  0  1  1  2  3  1  0  0  1  1  0  0  1  0  0
##   106000  0  0  0  0  0  0  0  1  2  0  0  0  0  0  0
##   107000  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   107300  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   107500  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   108000  0  0  0  1  0  0  1  0  0  0  0  0  0  0  0
##   110000  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   112000  0  0  1  0  0  0  0  1  0  0  0  0  0  1  0
##   115000  0  0  1  1  0  3  0  0  0  0  0  0  0  0  0
##   118000  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
##   120000  0  0  0  0  0  1  1  0  2  0  0  0  0  0  0
##   126710  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   130000  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   145800  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   146000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
##   162000  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   220000  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
table(mbanew$salary , mbanew$sex)
##         
##           1  2
##   998    37  9
##   999    30  5
##   64000   0  1
##   77000   1  0
##   78256   0  1
##   82000   0  1
##   85000   1  3
##   86000   0  2
##   88000   0  1
##   88500   1  0
##   90000   3  0
##   92000   2  1
##   93000   2  1
##   95000   4  3
##   96000   3  1
##   96500   1  0
##   97000   2  0
##   98000   6  4
##   99000   0  1
##   100000  4  5
##   100400  1  0
##   101000  0  2
##   101100  1  0
##   101600  1  0
##   102500  1  0
##   103000  1  0
##   104000  2  0
##   105000 11  0
##   106000  2  1
##   107000  1  0
##   107300  1  0
##   107500  1  0
##   108000  2  0
##   110000  0  1
##   112000  3  0
##   115000  5  0
##   118000  1  0
##   120000  3  1
##   126710  1  0
##   130000  1  0
##   145800  1  0
##   146000  1  0
##   162000  1  0
##   220000  0  1
table(mbanew$s_avg , mbanew$f_avg)
##       
##        0 2 2.25 2.33 2.5 2.67 2.75 2.8 2.83 3 3.17 3.2 3.25 3.33 3.4 3.5
##   2.2  0 1    0    0   0    0    0   0    0 1    0   0    0    0   0   0
##   2.3  0 0    1    0   1    0    0   0    0 0    0   0    0    0   0   0
##   2.4  0 1    1    0   2    0    3   0    0 0    0   0    0    0   0   0
##   2.45 0 0    0    0   0    0    1   0    0 0    0   0    0    0   0   0
##   2.5  0 0    1    0   3    0    4   0    0 2    0   0    0    0   0   0
##   2.6  0 0    0    0   4    0    3   0    0 3    0   0    0    0   0   0
##   2.67 1 0    0    0   0    0    0   0    0 0    0   0    0    0   0   0
##   2.7  0 0    0    0   3    0    6   0    0 6    0   1    3    0   0   0
##   2.73 0 0    0    0   0    0    0   0    0 0    1   0    0    0   0   0
##   2.8  0 0    0    0   0    0    3   0    0 5    0   0    2    0   0   0
##   2.9  0 0    0    0   0    0    5   1    0 6    0   0    6    1   0   1
##   2.91 0 0    0    0   0    0    0   0    1 0    0   0    0    0   0   0
##   3    0 0    0    0   0    0    4   0    0 6    0   0    4    0   0   0
##   3.09 0 0    0    0   0    0    0   0    0 1    0   0    0    0   0   1
##   3.1  0 0    0    1   0    1    0   0    0 5    0   0    2    1   0   3
##   3.18 0 0    0    0   0    0    0   0    0 0    0   0    1    0   0   0
##   3.2  0 0    0    0   0    0    0   0    0 4    0   0    6    0   1   1
##   3.27 0 0    0    0   0    0    0   0    0 0    0   0    1    0   0   0
##   3.3  0 0    0    0   0    0    0   0    0 2    0   0    9    0   0   5
##   3.4  0 0    0    0   0    0    0   1    0 1    0   0    3    0   0   0
##   3.45 0 0    0    0   0    0    0   0    0 0    0   0    0    0   0   1
##   3.5  0 0    0    0   0    1    0   0    0 2    0   0    3    0   0   4
##   3.56 0 0    0    0   0    0    0   0    0 0    0   0    0    0   0   0
##   3.6  0 0    0    0   0    0    0   0    0 0    0   0    0    0   0   4
##   3.7  0 0    0    0   0    0    0   0    0 0    0   0    0    0   0   0
##   3.8  0 0    0    0   0    0    0   0    0 0    0   0    0    0   0   2
##   4    1 0    0    0   0    0    0   0    0 0    0   0    0    0   0   0
##       
##        3.6 3.67 3.75 4
##   2.2    0    0    0 0
##   2.3    0    0    0 0
##   2.4    0    0    0 0
##   2.45   0    0    0 0
##   2.5    0    0    0 0
##   2.6    0    0    0 0
##   2.67   0    0    0 0
##   2.7    0    0    0 0
##   2.73   0    0    0 0
##   2.8    0    0    0 0
##   2.9    0    0    0 0
##   2.91   0    0    0 0
##   3      0    0    0 0
##   3.09   0    0    0 0
##   3.1    0    0    1 0
##   3.18   0    0    0 0
##   3.2    0    0    0 0
##   3.27   0    0    0 0
##   3.3    0    0    0 0
##   3.4    0    1    2 1
##   3.45   0    1    0 0
##   3.5    1    0    1 2
##   3.56   0    0    0 1
##   3.6    0    1    2 0
##   3.7    1    0    0 1
##   3.8    0    0    0 1
##   4      0    0    0 1
table(mbanew$salary , mbanew$gmat_tot)
##         
##          450 460 500 520 530 540 550 560 570 580 590 600 610 620 630 640
##   998      1   1   0   0   0   0   0   3   0   2   2   5   4   0   7   3
##   999      0   0   1   0   0   0   1   2   4   1   2   3   0   4   2   2
##   64000    0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0
##   77000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   78256    0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0
##   82000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   85000    0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   86000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   88000    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   88500    0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   90000    0   0   0   0   0   0   0   0   0   1   0   0   0   0   1   0
##   92000    0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   93000    0   0   0   0   0   1   0   0   0   0   0   0   1   1   0   0
##   95000    0   0   0   0   1   0   0   2   0   0   0   0   2   0   0   0
##   96000    0   0   0   0   0   0   0   1   0   0   1   1   0   0   0   0
##   96500    0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0
##   97000    0   0   0   0   0   0   0   0   0   1   0   0   0   1   0   0
##   98000    0   0   0   0   0   0   0   1   3   1   1   0   1   0   0   0
##   99000    0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
##   100000   0   0   0   0   0   0   0   2   0   1   0   1   1   0   1   0
##   100400   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   101000   0   0   0   0   0   0   0   0   0   0   0   1   0   1   0   0
##   101100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   101600   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   102500   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   103000   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   104000   0   0   0   0   1   0   0   1   0   0   0   0   0   0   0   0
##   105000   0   0   0   0   0   0   2   0   2   3   0   1   0   1   0   0
##   106000   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   107000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   107300   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   107500   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   108000   0   0   0   0   0   0   0   0   1   0   0   1   0   0   0   0
##   110000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
##   112000   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
##   115000   0   0   0   0   0   1   0   0   1   0   0   0   0   1   1   0
##   118000   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   120000   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   0
##   126710   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0
##   130000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   145800   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0
##   146000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
##   162000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
##   220000   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0
##         
##          650 660 670 680 690 700 710 720 730 740 790
##   998      2   3   5   2   2   0   1   1   0   2   0
##   999      2   3   1   1   2   0   1   0   1   1   1
##   64000    0   0   0   0   0   0   0   0   0   0   0
##   77000    0   1   0   0   0   0   0   0   0   0   0
##   78256    0   0   0   0   0   0   0   0   0   0   0
##   82000    0   0   1   0   0   0   0   0   0   0   0
##   85000    0   1   0   0   0   1   0   1   0   0   0
##   86000    0   0   0   1   0   0   0   0   0   0   0
##   88000    1   0   0   0   0   0   0   0   0   0   0
##   88500    0   0   0   0   0   0   0   0   0   0   0
##   90000    1   0   0   0   0   0   0   0   0   0   0
##   92000    0   1   0   0   0   0   1   0   0   0   0
##   93000    0   0   0   0   0   0   0   0   0   0   0
##   95000    0   0   2   0   0   0   0   0   0   0   0
##   96000    1   0   0   0   0   0   0   0   0   0   0
##   96500    0   0   0   0   0   0   0   0   0   0   0
##   97000    0   0   0   0   0   0   0   0   0   0   0
##   98000    0   0   1   1   0   0   1   0   0   0   0
##   99000    0   0   0   0   0   0   0   0   0   0   0
##   100000   2   0   0   0   0   0   1   0   0   0   0
##   100400   0   0   0   0   0   0   0   0   0   0   0
##   101000   0   0   0   0   0   0   0   0   0   0   0
##   101100   0   1   0   0   0   0   0   0   0   0   0
##   101600   0   0   0   0   0   0   0   0   0   0   0
##   102500   0   0   1   0   0   0   0   0   0   0   0
##   103000   0   0   0   0   0   0   0   0   0   0   0
##   104000   0   0   0   0   0   0   0   0   0   0   0
##   105000   1   0   0   1   0   0   0   0   0   0   0
##   106000   0   0   0   2   0   0   0   0   0   0   0
##   107000   0   0   0   0   0   0   0   0   0   0   0
##   107300   0   1   0   0   0   0   0   0   0   0   0
##   107500   0   0   0   0   0   0   0   0   0   0   0
##   108000   0   0   0   0   0   0   0   0   0   0   0
##   110000   0   0   0   0   0   0   0   0   0   0   0
##   112000   0   0   1   1   0   0   0   0   0   0   0
##   115000   0   0   0   0   0   0   1   0   0   0   0
##   118000   0   0   0   0   0   0   0   0   0   0   0
##   120000   0   0   1   0   0   1   0   0   0   0   0
##   126710   0   0   0   0   0   0   0   0   0   0   0
##   130000   1   0   0   0   0   0   0   0   0   0   0
##   145800   0   0   0   0   0   0   0   0   0   0   0
##   146000   0   0   0   0   0   0   0   0   0   0   0
##   162000   0   0   0   0   0   1   0   0   0   0   0
##   220000   0   0   0   0   0   0   0   0   0   0   0
chisq.test(mbanew$s_avg,mbanew$f_avg)
## Warning in chisq.test(mbanew$s_avg, mbanew$f_avg): Chi-squared
## approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mbanew$s_avg and mbanew$f_avg
## X-squared = 1033.1, df = 494, p-value < 2.2e-16
chisq.test(mbanew$age,mbanew$sex)
## Warning in chisq.test(mbanew$age, mbanew$sex): Chi-squared approximation
## may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  mbanew$age and mbanew$sex
## X-squared = 15.118, df = 14, p-value = 0.3702
t.test(salary ~ sex , data=mbanew)
## 
##  Welch Two Sample t-test
## 
## data:  salary by sex
## t = -1.5302, df = 78.552, p-value = 0.13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -30667.267   4010.795
## sample estimates:
## mean in group 1 mean in group 2 
##        54854.72        68182.96
attach(mbanew)
model1 <- salary ~ age + sex +gmat_tot + gmat_qpc + gmat_tpc + gmat_vpc + s_avg + f_avg + quarter + work_yrs + frstlang + satis

fit1 <- lm(model1, data = mbanew)
summary(fit1)
## 
## Call:
## lm(formula = model1, data = mbanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -103936  -13077    7917   20885  146540 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 228483.693  86388.607   2.645  0.00893 ** 
## age          -1550.150   2104.014  -0.737  0.46228    
## sex           5306.562   7117.925   0.746  0.45698    
## gmat_tot      -418.393    220.387  -1.898  0.05932 .  
## gmat_qpc       408.102    609.343   0.670  0.50393    
## gmat_tpc       786.043    487.510   1.612  0.10873    
## gmat_vpc       369.579    576.719   0.641  0.52249    
## s_avg        14107.508  14506.824   0.972  0.33219    
## f_avg        -2922.426   7048.776  -0.415  0.67895    
## quarter      -5499.290   4724.554  -1.164  0.24605    
## work_yrs      3493.891   2229.411   1.567  0.11892    
## frstlang    -16423.566  10377.748  -1.583  0.11537    
## satis          -72.717      6.805 -10.685  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 38840 on 171 degrees of freedom
## Multiple R-squared:  0.4888, Adjusted R-squared:  0.453 
## F-statistic: 13.63 on 12 and 171 DF,  p-value: < 2.2e-16
library(leaps)
leap1 <- regsubsets(model1, data = mbanew, nbest=1)
# summary(leap1)
plot(leap1, scale="adjr2")

model2 <- salary ~ gmat_tot + gmat_tpc + s_avg + quarter + work_yrs + frstlang + satis

fit2 <- lm(model2, data = mbanew)
summary(fit2)
## 
## Call:
## lm(formula = model2, data = mbanew)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -98441 -11784   9528  21140 148460 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 176769.764  64986.920   2.720  0.00718 ** 
## gmat_tot      -314.940    103.357  -3.047  0.00267 ** 
## gmat_tpc      1014.152    432.971   2.342  0.02028 *  
## s_avg        12434.965  13662.674   0.910  0.36399    
## quarter      -5578.065   4595.186  -1.214  0.22641    
## work_yrs      2045.615   1172.885   1.744  0.08289 .  
## frstlang    -19251.721   8688.711  -2.216  0.02799 *  
## satis          -72.921      6.687 -10.905  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 38480 on 176 degrees of freedom
## Multiple R-squared:  0.4835, Adjusted R-squared:  0.463 
## F-statistic: 23.54 on 7 and 176 DF,  p-value: < 2.2e-16