1. All five variables

m1_4 <- estimate_profiles_mplus(df, 
                        dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
                        starts = c(600, 120),
                        model = 1, n_profiles = 4,
                        n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 19196.328
## BIC is 38616.439
## Entropy is 0.811
extract_LL_mplus()
## # A tibble: 80 x 3
##    LL           seed m_iterations
##  * <chr>       <dbl> <chr>       
##  1 -19196.328 415931 10          
##  2 -19196.328 260953 589         
##  3 -19196.328 576220 115         
##  4 -19196.328 329127 185         
##  5 -19196.328 391179 78          
##  6 -19196.328 352277 42          
##  7 -19196.328 443442 380         
##  8 -19196.328 518828 432         
##  9 -19196.328  36714 201         
## 10 -19196.328 456213 160         
## # ... with 70 more rows
m1_5 <- estimate_profiles_mplus(df, 
                        dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
                        starts = c(600, 120),
                        model = 1, n_profiles=5,
                        n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 18817.934
## BIC is 37907.604
## Entropy is 0.913
extract_LL_mplus()
## # A tibble: 82 x 3
##    LL           seed m_iterations
##  * <chr>       <dbl> <chr>       
##  1 -18817.934 152496 123         
##  2 -18817.934 602797 336         
##  3 -18817.934 432148 30          
##  4 -18817.934 399848 220         
##  5 -18837.053 387701 275         
##  6 -18858.428 850545 357         
##  7 -18858.428 298275 418         
##  8 -18858.428 626891 32          
##  9 -18944.968 823392 479         
## 10 -18944.968 147440 514         
## # ... with 72 more rows
m1_6 <- estimate_profiles_mplus(df, 
                        dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
                        starts = c(600, 120),
                        model = 1, n_profiles=6,
                        n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 18648.785
## BIC is 37617.262
## Entropy is 0.888
extract_LL_mplus()
## # A tibble: 64 x 3
##    LL           seed m_iterations
##  * <chr>       <dbl> <chr>       
##  1 -18648.785   1548 384         
##  2 -18648.785 282464 283         
##  3 -18668.802 529496 343         
##  4 -18695.729  49221 254         
##  5 -18695.729 153394 429         
##  6 -18695.729 741888 138         
##  7 -18695.729  85114 385         
##  8 -18695.729 173191 422         
##  9 -18695.729 436460 89          
## 10 -18695.729 153942 31          
## # ... with 54 more rows
m1_7 <- estimate_profiles_mplus(df, 
                        dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
                        starts = c(600, 120),
                        model = 1, n_profiles=7,
                        n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 18407.232
## BIC is 37182.108
## Entropy is 0.886
extract_LL_mplus()
## # A tibble: 52 x 3
##    LL           seed m_iterations
##  * <chr>       <dbl> <chr>       
##  1 -18407.232 475420 71          
##  2 -18407.232 871438 561         
##  3 -18469.834 597614 284         
##  4 -18469.834 830570 369         
##  5 -18469.834 283492 435         
##  6 -18469.834 260953 589         
##  7 -18518.118 153394 429         
##  8 -18634.678 950604 172         
##  9 -18660.958 922596 456         
## 10 -18662.856 160326 546         
## # ... with 42 more rows

m1_4 %>% plot_profiles_mplus()

m1_5 %>% plot_profiles_mplus()

m1_6 %>% plot_profiles_mplus()

m1_7 %>% plot_profiles_mplus()

Next steps

Implement bootstrapped LRT in MPlus