m1_4 <- estimate_profiles_mplus(df,
dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
starts = c(600, 120),
model = 1, n_profiles = 4,
n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 19196.328
## BIC is 38616.439
## Entropy is 0.811
extract_LL_mplus()
## # A tibble: 80 x 3
## LL seed m_iterations
## * <chr> <dbl> <chr>
## 1 -19196.328 415931 10
## 2 -19196.328 260953 589
## 3 -19196.328 576220 115
## 4 -19196.328 329127 185
## 5 -19196.328 391179 78
## 6 -19196.328 352277 42
## 7 -19196.328 443442 380
## 8 -19196.328 518828 432
## 9 -19196.328 36714 201
## 10 -19196.328 456213 160
## # ... with 70 more rows
m1_5 <- estimate_profiles_mplus(df,
dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
starts = c(600, 120),
model = 1, n_profiles=5,
n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 18817.934
## BIC is 37907.604
## Entropy is 0.913
extract_LL_mplus()
## # A tibble: 82 x 3
## LL seed m_iterations
## * <chr> <dbl> <chr>
## 1 -18817.934 152496 123
## 2 -18817.934 602797 336
## 3 -18817.934 432148 30
## 4 -18817.934 399848 220
## 5 -18837.053 387701 275
## 6 -18858.428 850545 357
## 7 -18858.428 298275 418
## 8 -18858.428 626891 32
## 9 -18944.968 823392 479
## 10 -18944.968 147440 514
## # ... with 72 more rows
m1_6 <- estimate_profiles_mplus(df,
dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
starts = c(600, 120),
model = 1, n_profiles=6,
n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 18648.785
## BIC is 37617.262
## Entropy is 0.888
extract_LL_mplus()
## # A tibble: 64 x 3
## LL seed m_iterations
## * <chr> <dbl> <chr>
## 1 -18648.785 1548 384
## 2 -18648.785 282464 283
## 3 -18668.802 529496 343
## 4 -18695.729 49221 254
## 5 -18695.729 153394 429
## 6 -18695.729 741888 138
## 7 -18695.729 85114 385
## 8 -18695.729 173191 422
## 9 -18695.729 436460 89
## 10 -18695.729 153942 31
## # ... with 54 more rows
m1_7 <- estimate_profiles_mplus(df,
dm_cog_eng, dm_beh_eng, dm_aff_eng, dm_challenge, dm_competence,
starts = c(600, 120),
model = 1, n_profiles=7,
n_processors = 8, remove_tmp_files = FALSE)
## Note that this (and other functions that use MPlus) is at the experimental stage! Please provide feedback at https://github.com/jrosen48/tidyLPA
## LogLik is 18407.232
## BIC is 37182.108
## Entropy is 0.886
extract_LL_mplus()
## # A tibble: 52 x 3
## LL seed m_iterations
## * <chr> <dbl> <chr>
## 1 -18407.232 475420 71
## 2 -18407.232 871438 561
## 3 -18469.834 597614 284
## 4 -18469.834 830570 369
## 5 -18469.834 283492 435
## 6 -18469.834 260953 589
## 7 -18518.118 153394 429
## 8 -18634.678 950604 172
## 9 -18660.958 922596 456
## 10 -18662.856 160326 546
## # ... with 42 more rows
m1_4 %>% plot_profiles_mplus()
m1_5 %>% plot_profiles_mplus()
m1_6 %>% plot_profiles_mplus()
m1_7 %>% plot_profiles_mplus()
Implement bootstrapped LRT in MPlus