## boxplot of (dhat-dtrue)^2 of each design at each dtrue
library(ggplot2)
setwd("/home/boyazhang/repos/unifdist/code")
load('GP-2d-1.RData')
out1 <- as.data.frame(out)
row.names(out1) <- NULL
out1 <- cbind(out1, pse = (out1$dtrue-out1$dhat)^2)

outs <- out1[out1$dtrue <=0.1,]
outm <- out1[out1$dtrue >0.1 & out1$dtrue <0.8,]
outl <- out1[out1$dtrue >=0.80,]

out1 <- transform(outs, design = as.factor(design), dtrue = as.factor(round(dtrue,3)))
ggplot(out1, aes(x=dtrue, y=pse, fill=design)) +
  geom_boxplot() + labs(title="n=8, 2-d, red: random design; green: unifdist with maximin initial; blue: maximin; purple: unifdist with random initial")+ ylim(0,0.1)
## Warning: Removed 60 rows containing non-finite values (stat_boxplot).

out1 <- transform(outm, design = as.factor(design), dtrue = as.factor(round(dtrue,2)))
ggplot(out1, aes(x=dtrue, y=pse, fill=design)) +
  geom_boxplot() + labs(title="n=8, 2-d, red: random design; green: unifdist with maximin initial; blue: maximin; purple: unifdist with random initial")

out1 <- transform(outl, design = as.factor(design), dtrue = as.factor(round(dtrue,2)))
ggplot(out1, aes(x=dtrue, y=pse, fill=design)) +
  geom_boxplot() + labs(title="n=8, 2-d, red: random design; green: unifdist with maximin initial; blue: maximin; purple: unifdist with random initial")

## plot mse of each design at each dtrue
library(ggplot2)
load('GP-2d-1.RData')
out1 <- as.data.frame(out)
row.names(out1) <- NULL
out1 <- cbind(out1, pse = (out1$dtrue-out1$dhat)^2)
out.mse <- aggregate(out1$pse, by=list(out1$design, out1$dtrue), FUN = "mean" )
colnames(out.mse) <- c("design", "dtrue", "mse")
out.mse$design <- as.factor(out.mse$design)
ggplot(out.mse, aes(x=dtrue, y=mse, col=design)) +
  geom_point() + geom_line() + labs(title="n=8, 2-d,1: random design; 2: unifdist with maximin initial; 3: maximin; 4: unifdist with random initial")+
  geom_vline(xintercept = d, linetype = 2, col = "grey")