YunShen
2/13/2018
This presentation is using to demonstrate the association rules used in the shiny app First introducing some basic conveps of the assocation rules.
(have rule like {X} -> {Y})
surpport
Fraction of transactions that contain an itemset.(P(XY))
confidence
Measures how often items in Y appear in transactions that contain X.(P(XY)/P(X))
lift The ratio between confidence and the prior probability,A lift value less (larger) than 1 indicates a negative (positive) dependence or substitution (complementary) effect.(P(XY)/P(X)P(Y))
## Class Sex Age Survived
## 1 3rd Male Child No
## 2 3rd Male Child No
## 3 3rd Male Child No
## 4 3rd Male Child No
## 5 3rd Male Child No
## 6 3rd Male Child No
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.8 0.1 1 none FALSE TRUE 5 0.1 1
## maxlen target ext
## 10 rules FALSE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 220
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[10 item(s), 2201 transaction(s)] done [0.00s].
## sorting and recoding items ... [9 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [27 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
## lhs rhs support confidence lift count
## [1] ----> Age=Adult 0.9504771 0.9504771 1.0000000 2092
## [2] Class=2nd ----> Age=Adult 0.1185825 0.9157895 0.9635051 261
## [3] Class=1st ----> Age=Adult 0.1449341 0.9815385 1.0326798 319
## [4] Sex=Female ----> Age=Adult 0.1930940 0.9042553 0.9513700 425
## [5] Class=3rd ----> Age=Adult 0.2848705 0.8881020 0.9343750 627
## [6] Survived=Yes ----> Age=Adult 0.2971377 0.9198312 0.9677574 654
## [7] Class=Crew ----> Sex=Male 0.3916402 0.9740113 1.2384742 862
## [8] Class=Crew ----> Age=Adult 0.4020900 1.0000000 1.0521033 885
## [9] Survived=No ----> Sex=Male 0.6197183 0.9154362 1.1639949 1364
## [10] Survived=No ----> Age=Adult 0.6533394 0.9651007 1.0153856 1438
## Loading required package: grid
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout