#10000 random sample from exponential distribution of rate 3
x=rexp(1000,3)
e=numeric(1000)
#Making 1/(n-i+1)
c=1/(1000-1:1000+1)
#Expectation of order statistics
for (i in 1:1000) e[i]=sum(c[1:i]/3)
#Plotting expectation of order statistics
plot(sort(x),e,col="blue")
abline(a=0,b=1,col="red")

If we don’t know parameter scale, we can estimate.
#10000 random sample from exponential distribution of rate 3
x=rexp(1000,3)
e=numeric(1000)
#Making 1/(n-i+1)
c=1/(1000-1:1000+1)
#Expectation of order statistics
for (i in 1:1000) e[i]=sum(c[1:i]*mean(x))
#Plotting expectation of order statistics
plot(sort(x),e,col="blue")
abline(a=0,b=1,col="red")

For continous variables,
par(mfrow=c(2,2))
plot(sort(x),e,col="blue")
#Xk vrs F-1(K/n+1) n+1=1001
plot(sort(x),qexp(1:1000/1001,3),col="blue")
plot(pexp(sort(x),3),1:1000/1001,col="blue")

#Random chisq of df 2
x1=rchisq(1000,2)
par(mfrow=c(2,2))
plot(qnorm(1:1000/1001,mean = mean(x1),sd(x1)),sort(x1),col="blue")
#Same plot qq
qqnorm(x1)

We can’t say its normal.
#random 1000 values from uniform distribution
x2=runif(1000)
plot(sort(x2),qnorm(1:1000/1001,mean(x2),sd(x2)),col="blue")

not normal.
#1000 Random chisq with 40 df
x3=rchisq(1000,40)
plot(sort(x3),qnorm(1:1000/1001,mean(x3),sd(x3)),col="blue")

normal because chisq with higher degree move towards normal.
#1000 random normal sample
x4=rpois(1000,4)
plot(sort(x4),qnorm(1:1000/1001,mean(x4),sd(x4)),col="blue")

because possion is not contious distribution.
#10000 random sample from normal dist
x5=rnorm(1000)
plot(sort(x5),qnorm(1:1000/1001,mean(x5),sd(x5)),col="blue")

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCiMxMDAwMCByYW5kb20gc2FtcGxlIGZyb20gZXhwb25lbnRpYWwgZGlzdHJpYnV0aW9uIG9mIHJhdGUgMw0KeD1yZXhwKDEwMDAsMykNCg0KZT1udW1lcmljKDEwMDApDQojTWFraW5nIDEvKG4taSsxKQ0KYz0xLygxMDAwLTE6MTAwMCsxKQ0KI0V4cGVjdGF0aW9uIG9mIG9yZGVyIHN0YXRpc3RpY3MNCmZvciAoaSBpbiAxOjEwMDApIGVbaV09c3VtKGNbMTppXS8zKQ0KDQojUGxvdHRpbmcgZXhwZWN0YXRpb24gb2Ygb3JkZXIgc3RhdGlzdGljcyANCnBsb3Qoc29ydCh4KSxlLGNvbD0iYmx1ZSIpDQphYmxpbmUoYT0wLGI9MSxjb2w9InJlZCIpDQpgYGANCg0KSWYgd2UgZG9uJ3Qga25vdyBwYXJhbWV0ZXIgc2NhbGUsIHdlIGNhbiBlc3RpbWF0ZS4NCg0KYGBge3J9DQojMTAwMDAgcmFuZG9tIHNhbXBsZSBmcm9tIGV4cG9uZW50aWFsIGRpc3RyaWJ1dGlvbiBvZiByYXRlIDMNCng9cmV4cCgxMDAwLDMpDQoNCmU9bnVtZXJpYygxMDAwKQ0KI01ha2luZyAxLyhuLWkrMSkNCmM9MS8oMTAwMC0xOjEwMDArMSkNCiNFeHBlY3RhdGlvbiBvZiBvcmRlciBzdGF0aXN0aWNzDQpmb3IgKGkgaW4gMToxMDAwKSBlW2ldPXN1bShjWzE6aV0qbWVhbih4KSkNCg0KI1Bsb3R0aW5nIGV4cGVjdGF0aW9uIG9mIG9yZGVyIHN0YXRpc3RpY3MgDQpwbG90KHNvcnQoeCksZSxjb2w9ImJsdWUiKQ0KYWJsaW5lKGE9MCxiPTEsY29sPSJyZWQiKQ0KYGBgDQoNCkZvciBjb250aW5vdXMgdmFyaWFibGVzLA0KDQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KHNvcnQoeCksZSxjb2w9ImJsdWUiKQ0KI1hrIHZycyBGLTEoSy9uKzEpIG4rMT0xMDAxDQpwbG90KHNvcnQoeCkscWV4cCgxOjEwMDAvMTAwMSwzKSxjb2w9ImJsdWUiKQ0KcGxvdChwZXhwKHNvcnQoeCksMyksMToxMDAwLzEwMDEsY29sPSJibHVlIikNCmBgYA0KYGBge3J9DQojUmFuZG9tIGNoaXNxIG9mIGRmIDINCngxPXJjaGlzcSgxMDAwLDIpDQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChxbm9ybSgxOjEwMDAvMTAwMSxtZWFuID0gbWVhbih4MSksc2QoeDEpKSxzb3J0KHgxKSxjb2w9ImJsdWUiKQ0KDQoNCiNTYW1lIHBsb3QgcXENCnFxbm9ybSh4MSkNCmBgYA0KV2UgY2FuJ3Qgc2F5IGl0cyBub3JtYWwuDQoNCmBgYHtyfQ0KI3JhbmRvbSAxMDAwIHZhbHVlcyBmcm9tIHVuaWZvcm0gZGlzdHJpYnV0aW9uDQp4Mj1ydW5pZigxMDAwKQ0KcGxvdChzb3J0KHgyKSxxbm9ybSgxOjEwMDAvMTAwMSxtZWFuKHgyKSxzZCh4MikpLGNvbD0iYmx1ZSIpDQpgYGANCm5vdCBub3JtYWwuDQoNCmBgYHtyfQ0KIzEwMDAgUmFuZG9tIGNoaXNxIHdpdGggNDAgZGYNCngzPXJjaGlzcSgxMDAwLDQwKQ0KcGxvdChzb3J0KHgzKSxxbm9ybSgxOjEwMDAvMTAwMSxtZWFuKHgzKSxzZCh4MykpLGNvbD0iYmx1ZSIpDQpgYGANCg0Kbm9ybWFsIGJlY2F1c2UgY2hpc3Egd2l0aCBoaWdoZXIgZGVncmVlIG1vdmUgdG93YXJkcyBub3JtYWwuDQoNCmBgYHtyfQ0KIzEwMDAgcmFuZG9tIG5vcm1hbCBzYW1wbGUgDQp4ND1ycG9pcygxMDAwLDQpDQpwbG90KHNvcnQoeDQpLHFub3JtKDE6MTAwMC8xMDAxLG1lYW4oeDQpLHNkKHg0KSksY29sPSJibHVlIikNCmBgYA0KYmVjYXVzZSBwb3NzaW9uIGlzIG5vdCBjb250aW91cyBkaXN0cmlidXRpb24uDQoNCmBgYHtyfQ0KIzEwMDAwIHJhbmRvbSBzYW1wbGUgZnJvbSBub3JtYWwgZGlzdA0KeDU9cm5vcm0oMTAwMCkNCnBsb3Qoc29ydCh4NSkscW5vcm0oMToxMDAwLzEwMDEsbWVhbih4NSksc2QoeDUpKSxjb2w9ImJsdWUiKQ0KYGBgDQoNCg==