Reading the dataset

airline.df<-read.csv(paste("SixAirlinesDataV2.csv",sep=""))

Viewing the Dataset

View(airline.df)

Summarizing the Dataset

summary(airline.df)
##       Airline      Aircraft   FlightDuration   TravelMonth
##  AirFrance: 74   AirBus:151   Min.   : 1.250   Aug:127    
##  British  :175   Boeing:307   1st Qu.: 4.260   Jul: 75    
##  Delta    : 46                Median : 7.790   Oct:127    
##  Jet      : 61                Mean   : 7.578   Sep:129    
##  Singapore: 40                3rd Qu.:10.620              
##  Virgin   : 62                Max.   :14.660              
##       IsInternational  SeatsEconomy    SeatsPremium    PitchEconomy  
##  Domestic     : 40    Min.   : 78.0   Min.   : 8.00   Min.   :30.00  
##  International:418    1st Qu.:133.0   1st Qu.:21.00   1st Qu.:31.00  
##                       Median :185.0   Median :36.00   Median :31.00  
##                       Mean   :202.3   Mean   :33.65   Mean   :31.22  
##                       3rd Qu.:243.0   3rd Qu.:40.00   3rd Qu.:32.00  
##                       Max.   :389.0   Max.   :66.00   Max.   :33.00  
##   PitchPremium    WidthEconomy    WidthPremium    PriceEconomy 
##  Min.   :34.00   Min.   :17.00   Min.   :17.00   Min.   :  65  
##  1st Qu.:38.00   1st Qu.:18.00   1st Qu.:19.00   1st Qu.: 413  
##  Median :38.00   Median :18.00   Median :19.00   Median :1242  
##  Mean   :37.91   Mean   :17.84   Mean   :19.47   Mean   :1327  
##  3rd Qu.:38.00   3rd Qu.:18.00   3rd Qu.:21.00   3rd Qu.:1909  
##  Max.   :40.00   Max.   :19.00   Max.   :21.00   Max.   :3593  
##   PricePremium    PriceRelative      SeatsTotal  PitchDifference 
##  Min.   :  86.0   Min.   :0.0200   Min.   : 98   Min.   : 2.000  
##  1st Qu.: 528.8   1st Qu.:0.1000   1st Qu.:166   1st Qu.: 6.000  
##  Median :1737.0   Median :0.3650   Median :227   Median : 7.000  
##  Mean   :1845.3   Mean   :0.4872   Mean   :236   Mean   : 6.688  
##  3rd Qu.:2989.0   3rd Qu.:0.7400   3rd Qu.:279   3rd Qu.: 7.000  
##  Max.   :7414.0   Max.   :1.8900   Max.   :441   Max.   :10.000  
##  WidthDifference PercentPremiumSeats
##  Min.   :0.000   Min.   : 4.71      
##  1st Qu.:1.000   1st Qu.:12.28      
##  Median :1.000   Median :13.21      
##  Mean   :1.633   Mean   :14.65      
##  3rd Qu.:3.000   3rd Qu.:15.36      
##  Max.   :4.000   Max.   :24.69

Summarizing Using PSYCH

attach(airline.df)
library(psych)
## Warning: package 'psych' was built under R version 3.3.3
describe(airline.df)
##                     vars   n    mean      sd  median trimmed     mad   min
## Airline*               1 458    3.01    1.65    2.00    2.89    1.48  1.00
## Aircraft*              2 458    1.67    0.47    2.00    1.71    0.00  1.00
## FlightDuration         3 458    7.58    3.54    7.79    7.57    4.81  1.25
## TravelMonth*           4 458    2.56    1.17    3.00    2.58    1.48  1.00
## IsInternational*       5 458    1.91    0.28    2.00    2.00    0.00  1.00
## SeatsEconomy           6 458  202.31   76.37  185.00  194.64   85.99 78.00
## SeatsPremium           7 458   33.65   13.26   36.00   33.35   11.86  8.00
## PitchEconomy           8 458   31.22    0.66   31.00   31.26    0.00 30.00
## PitchPremium           9 458   37.91    1.31   38.00   38.05    0.00 34.00
## WidthEconomy          10 458   17.84    0.56   18.00   17.81    0.00 17.00
## WidthPremium          11 458   19.47    1.10   19.00   19.53    0.00 17.00
## PriceEconomy          12 458 1327.08  988.27 1242.00 1244.40 1159.39 65.00
## PricePremium          13 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative         14 458    0.49    0.45    0.36    0.42    0.41  0.02
## SeatsTotal            15 458  235.96   85.29  227.00  228.73   90.44 98.00
## PitchDifference       16 458    6.69    1.76    7.00    6.76    0.00  2.00
## WidthDifference       17 458    1.63    1.19    1.00    1.53    0.00  0.00
## PercentPremiumSeats   18 458   14.65    4.84   13.21   14.31    2.68  4.71
##                         max   range  skew kurtosis    se
## Airline*               6.00    5.00  0.61    -0.95  0.08
## Aircraft*              2.00    1.00 -0.72    -1.48  0.02
## FlightDuration        14.66   13.41 -0.07    -1.12  0.17
## TravelMonth*           4.00    3.00 -0.14    -1.46  0.05
## IsInternational*       2.00    1.00 -2.91     6.50  0.01
## SeatsEconomy         389.00  311.00  0.72    -0.36  3.57
## SeatsPremium          66.00   58.00  0.23    -0.46  0.62
## PitchEconomy          33.00    3.00 -0.03    -0.35  0.03
## PitchPremium          40.00    6.00 -1.51     3.52  0.06
## WidthEconomy          19.00    2.00 -0.04    -0.08  0.03
## WidthPremium          21.00    4.00 -0.08    -0.31  0.05
## PriceEconomy        3593.00 3528.00  0.51    -0.88 46.18
## PricePremium        7414.00 7328.00  0.50     0.43 60.19
## PriceRelative          1.89    1.87  1.17     0.72  0.02
## SeatsTotal           441.00  343.00  0.70    -0.53  3.99
## PitchDifference       10.00    8.00 -0.54     1.78  0.08
## WidthDifference        4.00    4.00  0.84    -0.53  0.06
## PercentPremiumSeats   24.69   19.98  0.71     0.28  0.23

Finding the datatype in the dataset

str(airline.df)
## 'data.frame':    458 obs. of  18 variables:
##  $ Airline            : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Aircraft           : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FlightDuration     : num  12.25 12.25 12.25 12.25 8.16 ...
##  $ TravelMonth        : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
##  $ IsInternational    : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
##  $ SeatsEconomy       : int  122 122 122 122 122 122 122 122 122 122 ...
##  $ SeatsPremium       : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ PitchEconomy       : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ PitchPremium       : int  38 38 38 38 38 38 38 38 38 38 ...
##  $ WidthEconomy       : int  18 18 18 18 18 18 18 18 18 18 ...
##  $ WidthPremium       : int  19 19 19 19 19 19 19 19 19 19 ...
##  $ PriceEconomy       : int  2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
##  $ PricePremium       : int  3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
##  $ PriceRelative      : num  0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
##  $ SeatsTotal         : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ PitchDifference    : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ WidthDifference    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ PercentPremiumSeats: num  24.7 24.7 24.7 24.7 24.7 ...

Finding price differences in premium and economy and also finding the cheapest and the costliest airlines with these constraints.

aggregate(airline.df$PricePremium~airline.df$Airline, FUN=mean)
##   airline.df$Airline airline.df$PricePremium
## 1          AirFrance               3065.2162
## 2            British               1937.0286
## 3              Delta                684.6739
## 4                Jet                483.3607
## 5          Singapore               1239.9250
## 6             Virgin               2721.6935
aggregate(airline.df$PriceEconomy~airline.df$Airline, FUN=mean)
##   airline.df$Airline airline.df$PriceEconomy
## 1          AirFrance               2769.7838
## 2            British               1293.4800
## 3              Delta                560.9348
## 4                Jet                276.1639
## 5          Singapore                860.2500
## 6             Virgin               1603.5323

The mean premium price varied for different airlines. It was the least for Jet(483) around to max for AirFrance(3065). Jet had the lowest economic price with the highest Economy price by AirFrance at 2770.

Creating Box Plot

boxplot(airline.df$FlightDuration~airline.df$Aircraft,
        xlab="Aircraft",
        ylab="Flight Duration",
        col=c("green","skyblue"))

Another Box Plot

boxplot(airline.df$FlightDuration~airline.df$Airline,
        xlab="Airline",
        ylab="Flight Duration",
        col=c("grey","red","orange"))

Drawing CORRGRAM

library(corrgram)
## Warning: package 'corrgram' was built under R version 3.3.3
corrgram(airline.df, order=FALSE, 
         lower.panel=panel.shade,
         upper.panel=panel.pie, 
         main="Corrgram")

Comparing Premium Economy Vs Economy Price

plot(~airline.df$PriceEconomy + airline.df$PricePremium, main="Premium Economy Price vs. Economy Price")
abline(0,1)

Pitch Difference of Premium Economy Vs Economy

library(lattice)
## Warning: package 'lattice' was built under R version 3.3.3
histogram(~airline.df$PitchDifference, main = "Distribution of Pitch Difference", xlab="Difference in Pitch")

Relative Price Between Premium Economy Vs Economy

boxplot(airline.df$PriceRelative~airline.df$PitchDifference, main="Relative Price Difference vs.Pitch", ylab="Pitch Difference", xlab="Relative Price b/w Economy and Premium Economy")

Analysisnng all fieds using scatter plot

library(car)
## Warning: package 'car' was built under R version 3.3.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(~PricePremium+PriceEconomy+SeatsTotal+PercentPremiumSeats+PitchDifference+WidthDifference, data=airline.df, main="Premium Economy vs. Economy Airfares")

Create a Variance-Covariance Matrix

library(lattice)
library(survival)
## Warning: package 'survival' was built under R version 3.3.3
library(Formula)
## Warning: package 'Formula' was built under R version 3.3.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.3.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 3.3.3
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:base':
## 
##     format.pval, units
colairlines <- c("PricePremium","PriceEconomy","PitchDifference","WidthDifference")
corMatrix <- rcorr(as.matrix(airline.df[,colairlines]))
corMatrix
##                 PricePremium PriceEconomy PitchDifference WidthDifference
## PricePremium            1.00         0.90           -0.02           -0.01
## PriceEconomy            0.90         1.00           -0.10           -0.08
## PitchDifference        -0.02        -0.10            1.00            0.76
## WidthDifference        -0.01        -0.08            0.76            1.00
## 
## n= 458 
## 
## 
## P
##                 PricePremium PriceEconomy PitchDifference WidthDifference
## PricePremium                 0.0000       0.6998          0.8059         
## PriceEconomy    0.0000                    0.0332          0.0708         
## PitchDifference 0.6998       0.0332                       0.0000         
## WidthDifference 0.8059       0.0708       0.0000