library(tidyverse)

Importing Cancer Data 2012

library(readr)
NYcancerdeaths <- read_csv("/Users/robertperez/Downloads/R11590564_SL050.csv", col_names = TRUE)
Parsed with column specification:
cols(
  .default = col_double(),
  Geo_FIPS = col_integer(),
  Geo_NAME = col_character(),
  Geo_QNAME = col_character(),
  Geo_NATION = col_character(),
  Geo_STATE = col_integer(),
  Geo_COUNTY = col_character()
)
See spec(...) for full column specifications.
print(NYcancerdeaths)

Creating New Data Set & Recoding

#T011_002:      White:
#T011_003:         White non-Hispanic
#T011_004:      Black or African American:
#T011_005:         Black or African American non-Hispanic
#T011_006:      Asian or Pacific Islander
#T011_007:      American Indian or Alaska Native
library(dplyr)
NYcancerdeaths2 <- rename(
  NYcancerdeaths,
  total100k = SE_T011_001,
  whites100k = SE_T011_002,
  white_nothisp.100k = SE_T011_003,
  blacks100k = SE_T011_004,
  black_nothisp.100k = SE_T011_005,
  asian_pacificislander100k = SE_T011_006,
  american_indian100k = SE_T011_007
  )

Dropping and Selecting Variables

NYcancerdeaths2 <- select(NYcancerdeaths2, total100k, whites100k, white_nothisp.100k, blacks100k, black_nothisp.100k, asian_pacificislander100k, american_indian100k)
print(NYcancerdeaths2)

Condensing Variables

NYcancerdeaths2 <- mutate(NYcancerdeaths2, whites_total100k = whites100k + white_nothisp.100k,
blacks_total100k = blacks100k + black_nothisp.100k)
print(NYcancerdeaths2)

GGplot Plotting Cancer Deaths in the NY County

library(ggplot2)
NYCounty<- c(299.2, 399.8, 118.4, 180.7)
race<- c('WhitesPer100k', 'BlacksPer100k', 'Asian/Pacific IslandersPer100k', 'American IndiansPer100k')
NYcancerdeathbyrace = data.frame(race)
ggplot(data = NYcancerdeathbyrace ) + geom_col(aes(x=race, y=NYCounty), fill = "red") + labs(x="Race",y="CancerDeathsPer100k", title="Cancer Deaths by Race in NY County, 2006-2012") + theme(plot.title = element_text(hjust = 0.5))

The plot above shows that blacks have the highest incidence of cancer deaths per 100,000 people while asian/pacficic islanders had the lowest incidince of cancer deaths per 100,00 people.

LS0tCnRpdGxlOiAiKkNhbmNlciBEZWF0aHMgaW4gTmV3IFlvcmsgYnkgUmFjZSoiCmF1dGhvcjogIlJvYmVydCBQZXJleiIKZGF0ZTogIkZlYnJ1YXJ5IDExLCAyMDE4IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCmBgYHtyLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKYGBgCgojIyMqSW1wb3J0aW5nIENhbmNlciBEYXRhIDIwMTIqCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRX0KbGlicmFyeShyZWFkcikKTlljYW5jZXJkZWF0aHMgPC0gcmVhZF9jc3YoIi9Vc2Vycy9yb2JlcnRwZXJlei9Eb3dubG9hZHMvUjExNTkwNTY0X1NMMDUwLmNzdiIsIGNvbF9uYW1lcyA9IFRSVUUpCnByaW50KE5ZY2FuY2VyZGVhdGhzKQpgYGAKIyNDcmVhdGluZyBOZXcgRGF0YSBTZXQgJiBSZWNvZGluZyAKYGBge3J9CiNUMDExXzAwMjogICAgICBXaGl0ZToKI1QwMTFfMDAzOiAgICAgICAgIFdoaXRlIG5vbi1IaXNwYW5pYwojVDAxMV8wMDQ6ICAgICAgQmxhY2sgb3IgQWZyaWNhbiBBbWVyaWNhbjoKI1QwMTFfMDA1OiAgICAgICAgIEJsYWNrIG9yIEFmcmljYW4gQW1lcmljYW4gbm9uLUhpc3BhbmljCiNUMDExXzAwNjogICAgICBBc2lhbiBvciBQYWNpZmljIElzbGFuZGVyCiNUMDExXzAwNzogICAgICBBbWVyaWNhbiBJbmRpYW4gb3IgQWxhc2thIE5hdGl2ZQoKbGlicmFyeShkcGx5cikKCk5ZY2FuY2VyZGVhdGhzMiA8LSByZW5hbWUoCiAgTlljYW5jZXJkZWF0aHMsCiAgdG90YWwxMDBrID0gU0VfVDAxMV8wMDEsCiAgd2hpdGVzMTAwayA9IFNFX1QwMTFfMDAyLAogIHdoaXRlX25vdGhpc3AuMTAwayA9IFNFX1QwMTFfMDAzLAogIGJsYWNrczEwMGsgPSBTRV9UMDExXzAwNCwKICBibGFja19ub3RoaXNwLjEwMGsgPSBTRV9UMDExXzAwNSwKICBhc2lhbl9wYWNpZmljaXNsYW5kZXIxMDBrID0gU0VfVDAxMV8wMDYsCiAgYW1lcmljYW5faW5kaWFuMTAwayA9IFNFX1QwMTFfMDA3CiAgKQpgYGAKCiMjRHJvcHBpbmcgYW5kIFNlbGVjdGluZyBWYXJpYWJsZXMKYGBge3J9Ck5ZY2FuY2VyZGVhdGhzMiA8LSBzZWxlY3QoTlljYW5jZXJkZWF0aHMyLCB0b3RhbDEwMGssIHdoaXRlczEwMGssIHdoaXRlX25vdGhpc3AuMTAwaywgYmxhY2tzMTAwaywgYmxhY2tfbm90aGlzcC4xMDBrLCBhc2lhbl9wYWNpZmljaXNsYW5kZXIxMDBrLCBhbWVyaWNhbl9pbmRpYW4xMDBrKQpwcmludChOWWNhbmNlcmRlYXRoczIpCmBgYAojI0NvbmRlbnNpbmcgVmFyaWFibGVzIApgYGB7cn0KTlljYW5jZXJkZWF0aHMyIDwtIG11dGF0ZShOWWNhbmNlcmRlYXRoczIsIHdoaXRlc190b3RhbDEwMGsgPSB3aGl0ZXMxMDBrICsgd2hpdGVfbm90aGlzcC4xMDBrLApibGFja3NfdG90YWwxMDBrID0gYmxhY2tzMTAwayArIGJsYWNrX25vdGhpc3AuMTAwaykKcHJpbnQoTlljYW5jZXJkZWF0aHMyKQpgYGAKIyNHR3Bsb3QgUGxvdHRpbmcgQ2FuY2VyIERlYXRocyBpbiB0aGUgTlkgQ291bnR5CmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpCk5ZQ291bnR5PC0gYygyOTkuMiwgMzk5LjgsIDExOC40LCAxODAuNykKcmFjZTwtIGMoJ1doaXRlc1BlcjEwMGsnLCAnQmxhY2tzUGVyMTAwaycsICdBc2lhbi9QYWNpZmljIElzbGFuZGVyc1BlcjEwMGsnLCAnQW1lcmljYW4gSW5kaWFuc1BlcjEwMGsnKQpOWWNhbmNlcmRlYXRoYnlyYWNlID0gZGF0YS5mcmFtZShyYWNlKQpnZ3Bsb3QoZGF0YSA9IE5ZY2FuY2VyZGVhdGhieXJhY2UgKSArIGdlb21fY29sKGFlcyh4PXJhY2UsIHk9TllDb3VudHkpLCBmaWxsID0gInJlZCIpICsgbGFicyh4PSJSYWNlIix5PSJDYW5jZXJEZWF0aHNQZXIxMDBrIiwgdGl0bGU9IkNhbmNlciBEZWF0aHMgYnkgUmFjZSBpbiBOWSBDb3VudHksIDIwMDYtMjAxMiIpICsgdGhlbWUocGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSkpCmBgYApUaGUgcGxvdCBhYm92ZSBzaG93cyB0aGF0IGJsYWNrcyBoYXZlIHRoZSBoaWdoZXN0IGluY2lkZW5jZSBvZiBjYW5jZXIgZGVhdGhzIHBlciAxMDAsMDAwIHBlb3BsZSB3aGlsZSBhc2lhbi9wYWNmaWNpYyBpc2xhbmRlcnMgaGFkIHRoZSBsb3dlc3QgaW5jaWRpbmNlIG9mIGNhbmNlciBkZWF0aHMgcGVyIDEwMCwwMCBwZW9wbGUuIAoK