library(car)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.1. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
enfadea2<-enfadea%>%
  mutate(age= case_when(enfadea$p102 %in% c(20:24)~"selected"))%>%
  filter(age == "selected")

Ordinal logistic regression

Following the previous homework where we explore the relation of violence in childhood and age of sexual initiation, now I will use the National Survey of the Determinants of Adolescent Pregnancy 2017 (ENFADEA)to extend beyond Baja California the similar idea using an ordinal logistic regression. The population for this survey where females between 20 and 24 years.

Outcome Variable
# Age of sexual initiation.
# This variable is define from the question about age of sexual initiation from the women who respondend. Since the median age of sexual initiation was 17, I decided to code Age of sexual initiation (eis) as 'before 17 years' (< 17), '17 years' (17) and 'after 17 years' (> 17). 

enfadea2$eis<-car::recode(enfadea2$p204, recodes="11:16='1.< 17'; 17='2.17'; 18:24='3.> 17'; else=NA", as.factor.result = T)
enfadea2$eis<-relevel(enfadea2$eis, ref='1.< 17')
freq(enfadea2$eis)
##           n    % val%
## 1.< 17  922 27.3 33.4
## 2.17    505 14.9 18.3
## 3.> 17 1334 39.5 48.3
## NA      618 18.3   NA
enfadea2$afsr<-car::recode(enfadea2$eis, recodes = "'1.< 17' =1; '2.17'=2; '3.> 17'=3; else=NA", as.factor.result = F)

For the independent variables I’ll use similar variables as in the previous homework: if the respondent considers itself indigenous; education (as none/basic/secundaty/high school/professional); religion (as none/catholic/other); if the respondent grew in an urban context and if the respondent worked as a minor.

Independent Variables: Sociodemographics
#Indigenous
freq(enfadea2$p104)
##           n    % val%
## [1] Sí 1659 49.1 49.2
## [2] No 1713 50.7 50.8
## NA        7  0.2   NA
enfadea2$indi<-car::recode(enfadea2$p104, recodes="1='1.indigenous'; 2='2.no indigenous'; else=NA", as.factor.result=T)
freq(enfadea2$indi)
##                    n    % val%
## 1.indigenous    1659 49.1 49.2
## 2.no indigenous 1713 50.7 50.8
## NA                 7  0.2   NA
enfadea2$indi<-relevel(enfadea2$indi, ref = '1.indigenous')
#Education
freq(enfadea2$p105_n)
##                                                                   n    %
## [0] Ninguno                                                      35  1.0
## [1] Preescolar                                                    3  0.1
## [2] Primaria                                                    362 10.7
## [3] Secundaria                                                 1035 30.6
## [4] Preparatoria o bachillerato                                1016 30.1
## [5] Estudios técnicos o comerciales con primaria terminada        8  0.2
## [6] Estudios técnicos o comerciales con secundaria terminada     26  0.8
## [7] Estudios técnicos o comerciales con preparatoria terminada  244  7.2
## [8] Normal con licenciatura                                      42  1.2
## [9] Licenciatura o profesional                                  598 17.7
## [10] Posgrado (Especialidad, Maestría o Doctorado)               10  0.3
##                                                                val%
## [0] Ninguno                                                     1.0
## [1] Preescolar                                                  0.1
## [2] Primaria                                                   10.7
## [3] Secundaria                                                 30.6
## [4] Preparatoria o bachillerato                                30.1
## [5] Estudios técnicos o comerciales con primaria terminada      0.2
## [6] Estudios técnicos o comerciales con secundaria terminada    0.8
## [7] Estudios técnicos o comerciales con preparatoria terminada  7.2
## [8] Normal con licenciatura                                     1.2
## [9] Licenciatura o profesional                                 17.7
## [10] Posgrado (Especialidad, Maestría o Doctorado)              0.3
enfadea2$educ<-car::recode(enfadea2$p105_n, recodes="0='1.none'; 1:2='2.basic'; 3='3.secundary'; 4= '4.high school'; 5='2.basic'; 6='3.secundary'; 7='4.high school'; 8:10='5.professional'; else=NA", as.factor.result=T)
freq(enfadea2$educ)
##                   n    % val%
## 1.none           35  1.0  1.0
## 2.basic         373 11.0 11.0
## 3.secundary    1061 31.4 31.4
## 4.high school  1260 37.3 37.3
## 5.professional  650 19.2 19.2
enfadea2$educ<-relevel(enfadea2$educ, ref = '3.secundary')
#Religion
freq(enfadea2$p106)
##                                                                       n
## [0] Ninguna                                                         226
## [1] Católica                                                       2731
## [2] Cristiana, Presbiteriana, Luz del Mundo                         266
## [3] Evangélica                                                       40
## [4] Testigos de Jehová                                               36
## [5] Pentecostal                                                      33
## [6] Creyente de la Santa Muerte, Palo Mayombe, Budista               22
## [7] Bíblica diferente de Evangélica (Adventista, Sabática, Mormón)   24
## NA                                                                    1
##                                                                       %
## [0] Ninguna                                                         6.7
## [1] Católica                                                       80.8
## [2] Cristiana, Presbiteriana, Luz del Mundo                         7.9
## [3] Evangélica                                                      1.2
## [4] Testigos de Jehová                                              1.1
## [5] Pentecostal                                                     1.0
## [6] Creyente de la Santa Muerte, Palo Mayombe, Budista              0.7
## [7] Bíblica diferente de Evangélica (Adventista, Sabática, Mormón)  0.7
## NA                                                                  0.0
##                                                                    val%
## [0] Ninguna                                                         6.7
## [1] Católica                                                       80.8
## [2] Cristiana, Presbiteriana, Luz del Mundo                         7.9
## [3] Evangélica                                                      1.2
## [4] Testigos de Jehová                                              1.1
## [5] Pentecostal                                                     1.0
## [6] Creyente de la Santa Muerte, Palo Mayombe, Budista              0.7
## [7] Bíblica diferente de Evangélica (Adventista, Sabática, Mormón)  0.7
## NA                                                                   NA
enfadea2$relig<-car::recode(enfadea2$p106, recodes="0='3.none'; 1='1.catholic'; 2:7='2.other'; else=NA", as.factor.result=T)
freq(enfadea2$relig)
##               n    % val%
## 1.catholic 2731 80.8 80.8
## 2.other     421 12.5 12.5
## 3.none      226  6.7  6.7
## NA            1  0.0   NA
enfadea2$relig<-relevel(enfadea2$relig, ref = '1.catholic')
#Urban context
freq(enfadea2$p110)
##                      n    % val%
## [1] En un rancho  1000 29.6 29.6
## [2] En un pueblo  1133 33.5 33.6
## [3] En una ciudad 1244 36.8 36.8
## NA                   2  0.1   NA
enfadea2$urb<-car::recode(enfadea2$p110, recodes="1:2='2.no urban'; 3='1.urban'; else=NA", as.factor.result=T)
freq(enfadea2$urb)
##               n    % val%
## 1.urban    1244 36.8 36.8
## 2.no urban 2133 63.1 63.2
## NA            2  0.1   NA
enfadea2$urb<-relevel(enfadea2$urb, ref = '1.urban')
#Worked as a minor
freq(enfadea2$p144)
##      n    % val%
## 10  65  1.9  2.5
## 11  13  0.4  0.5
## 12  62  1.8  2.4
## 13  78  2.3  3.0
## 14 119  3.5  4.6
## 15 294  8.7 11.4
## 16 341 10.1 13.2
## 17 365 10.8 14.2
## 18 489 14.5 19.0
## 19 315  9.3 12.2
## 20 246  7.3  9.6
## 21  95  2.8  3.7
## 22  55  1.6  2.1
## 23  30  0.9  1.2
## 24   8  0.2  0.3
## NA 804 23.8   NA
summary(enfadea2$p144)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   10.00   16.00   17.00   17.12   19.00   24.00     804
enfadea2$work<-car::recode(enfadea2$p144, recodes="10:17='1.worked <17'; 18:24='2.worked >17'; else=NA", as.factor.result=T)
freq(enfadea2$work)
##                 n    % val%
## 1.worked <17 1337 39.6 51.9
## 2.worked >17 1238 36.6 48.1
## NA            804 23.8   NA
enfadea2$work<-relevel(enfadea2$work, ref = '1.worked <17')

For this set of variables I’ll use the questions about insults, hits, inappropriate touching and sexual abuse for those respondents who suffered the previous in their adolescense or childhood.

Independent Variables: Violence in childhood
#Insults
freq(enfadea2$p601_a)
##                       n    % val%
## [1] Muy frecuente   176  5.2  5.2
## [2] Poco frecuente  280  8.3  8.3
## [3] Una vez          99  2.9  2.9
## [4] No ocurrió     2819 83.4 83.6
## NA                    5  0.1   NA
enfadea2$insults<-car::recode(enfadea2$p601_a, recodes="1:3='1.Yes_insults'; 4='2.No_insults'; else=NA", as.factor.result=T)
freq(enfadea2$insults)
##                  n    % val%
## 1.Yes_insults  555 16.4 16.4
## 2.No_insults  2819 83.4 83.6
## NA               5  0.1   NA
enfadea2$insults<-relevel(enfadea2$insults, ref = '1.Yes_insults')
#Hits
freq(enfadea2$p601_b)
##                       n    % val%
## [1] Muy frecuente   145  4.3  4.3
## [2] Poco frecuente  213  6.3  6.3
## [3] Una vez         105  3.1  3.1
## [4] No ocurrió     2912 86.2 86.3
## NA                    4  0.1   NA
enfadea2$hits<-car::recode(enfadea2$p601_b, recodes="1:3='1.Yes_hits'; 4='2.No_hits'; else=NA", as.factor.result=T)
freq(enfadea2$hits)
##               n    % val%
## 1.Yes_hits  463 13.7 13.7
## 2.No_hits  2912 86.2 86.3
## NA            4  0.1   NA
enfadea2$hits<-relevel(enfadea2$hits, ref = '1.Yes_hits')
freq(enfadea2$p601_e)
##                       n    % val%
## [1] Muy frecuente    29  0.9  0.9
## [2] Poco frecuente   18  0.5  0.5
## [3] Una vez          34  1.0  1.0
## [4] No ocurrió     3294 97.5 97.6
## NA                    4  0.1   NA
enfadea2$touch<-car::recode(enfadea2$p601_e, recodes="1:3='1.Yes_touching'; 4='2.No_touching'; else=NA", as.factor.result=T)
freq(enfadea2$touch)
##                   n    % val%
## 1.Yes_touching   81  2.4  2.4
## 2.No_touching  3294 97.5 97.6
## NA                4  0.1   NA
enfadea2$touch<-relevel(enfadea2$touch, ref = '1.Yes_touching')
freq(enfadea2$p601_f)
##                       n    % val%
## [1] Muy frecuente    12  0.4  0.4
## [2] Poco frecuente   13  0.4  0.4
## [3] Una vez          19  0.6  0.6
## [4] No ocurrió     3330 98.5 98.7
## NA                    5  0.1   NA
enfadea2$sexabuse<-car::recode(enfadea2$p601_f, recodes="1:3='1.Yes_abuse'; 4='2.No_abuse'; else=NA", as.factor.result=T)
freq(enfadea2$sexabuse)
##                n    % val%
## 1.Yes_abuse   44  1.3  1.3
## 2.No_abuse  3330 98.5 98.7
## NA             5  0.1   NA
enfadea2$sexabuse<-relevel(enfadea2$sexabuse, ref = '1.Yes_abuse')

I kept the variables of interest in a separate objec and created the survey design.

enfadea3<-enfadea2%>%
  select(eis, afsr, indi, educ, relig, urb, work, insults, hits, touch, sexabuse, pon_muj)%>%
  filter(complete.cases(.))
  
options(survey.lonely.psu = "adjust")
des<-svydesign(ids = ~1, weights = enfadea3$pon_muj, data = enfadea3)

The model ord1 uses the first set of independent variables. The AIC were calculated using what we saw in class. The results are from the proportional odds model. We see that compared with the indigenous women, no indigenous women have lower odds of have had their first sexual relation before 17. Women with basic, high school or professional education have higher odds of have had their first sexual relation before 11 compared with women with secundary education. Women with no religion, compared with catholic women, have lower odds of have had their first sexual relation before 17.

ord1<-svyolr(eis~indi+educ+relig+urb+work, des)
summary(ord1)
## Call:
## svyolr(eis ~ indi + educ + relig + urb + work, des)
## 
## Coefficients:
##                          Value Std. Error    t value
## indi2.no indigenous -0.1741332  0.1764248 -0.9870112
## educ1.none          -0.8952040  0.5825528 -1.5366916
## educ2.basic          0.2567913  0.3045023  0.8433149
## educ4.high school    0.7682987  0.1856980  4.1373565
## educ5.professional   1.7717252  0.2335937  7.5846441
## relig2.other         0.1956024  0.2168599  0.9019758
## relig3.none         -0.4435646  0.2307986 -1.9218687
## urb2.no urban        0.2784466  0.1770191  1.5729752
## work2.worked >17     0.5777754  0.1628626  3.5476247
## 
## Intercepts:
##             Value   Std. Error t value
## 1.< 17|2.17  0.0989  0.2050     0.4822
## 2.17|3.> 17  0.9229  0.2084     4.4278
or.ord1<-exp(ord1$coefficients); or.ord1
## indi2.no indigenous          educ1.none         educ2.basic 
##           0.8401850           0.4085242           1.2927753 
##   educ4.high school  educ5.professional        relig2.other 
##           2.1560950           5.8809907           1.2160433 
##         relig3.none       urb2.no urban    work2.worked >17 
##           0.6417448           1.3210761           1.7820696
#Examining the proportional odds assumption by fitting logits for each change
ex1<-svyglm(I(afsr>1)~indi+educ+relig+urb+work, des, family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
ex2<-svyglm(I(afsr>2)~indi+educ+relig+urb+work, des, family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
plot(coef(ex1)[-1], ylim=c(-3, 3), type="l",xaxt="n", ylab="Beta", main=c("Comparison of betas for proportional odds assumption"))
lines(coef(ex2)[-1], col=1, lty=2) 
axis(side=1, at=1:9, labels=F)
text(x=1:9, y=-4,  srt = 90, pos = 1, xpd = TRUE,cex=.7,
     labels = c( "No indigenous", "None","Basic","High school","Professional","Other religion", "No religion", "Non urban", "Worked > 17"))
legend("topright",col=c(1,1),lty=c(1,2), legend=c("> 1", "> 2"))
lines(coef(ord1)[c(-11:-12)], col=4, lwd=3)

#Odds ratios
round(exp(rbind(coef(ex1)[-1], coef(ex2)[-1])),3)
##      indi2.no indigenous educ1.none educ2.basic educ4.high school
## [1,]               0.918      0.463       1.367             2.257
## [2,]               0.790      0.281       1.196             2.080
##      educ5.professional relig2.other relig3.none urb2.no urban
## [1,]              6.689        1.000       0.624         1.230
## [2,]              5.643        1.293       0.640         1.418
##      work2.worked >17
## [1,]            1.530
## [2,]            1.976

The model ord2 incorporates the second set of independent variables. From the odds ratios we observed similar results to the ord1. Women who do not suffered from hits have higher odds of have had their first sexual relation before 17 compared with women who suffered from hits.

ord2<-svyolr(eis~indi+educ+relig+urb+work+insults+hits+touch+sexabuse, des)
summary(ord2)
## Call:
## svyolr(eis ~ indi + educ + relig + urb + work + insults + hits + 
##     touch + sexabuse, des)
## 
## Coefficients:
##                           Value Std. Error    t value
## indi2.no indigenous -0.15419013  0.1779343 -0.8665568
## educ1.none          -0.88398748  0.6094230 -1.4505319
## educ2.basic          0.29726473  0.2980361  0.9974117
## educ4.high school    0.77760966  0.1878587  4.1393337
## educ5.professional   1.77797995  0.2384983  7.4548960
## relig2.other         0.22876240  0.2224274  1.0284813
## relig3.none         -0.40437195  0.2189503 -1.8468662
## urb2.no urban        0.27755280  0.1768984  1.5689957
## work2.worked >17     0.54227729  0.1657857  3.2709542
## insults2.No_insults -0.01306457  0.2063189 -0.0633222
## hits2.No_hits        0.33822008  0.2257994  1.4978782
## touch2.No_touching  -0.46349954  0.6001061 -0.7723627
## sexabuse2.No_abuse   1.63088580  0.8265460  1.9731339
## 
## Intercepts:
##             Value   Std. Error t value
## 1.< 17|2.17  1.5143  0.7487     2.0225
## 2.17|3.> 17  2.3482  0.7579     3.0983
or.ord2<-exp(ord2$coefficients); or.ord2
## indi2.no indigenous          educ1.none         educ2.basic 
##           0.8571090           0.4131323           1.3461716 
##   educ4.high school  educ5.professional        relig2.other 
##           2.1762640           5.9178899           1.2570433 
##         relig3.none       urb2.no urban    work2.worked >17 
##           0.6673958           1.3198958           1.7199192 
## insults2.No_insults       hits2.No_hits  touch2.No_touching 
##           0.9870204           1.4024491           0.6290783 
##  sexabuse2.No_abuse 
##           5.1083977
#AIC for ord1 and ord2
ord1$deviance+2*length(ord1$coefficients)
## [1] 3993.275
ord2$deviance+2*length(ord2$coefficients)
## [1] 3971.915
#Examining the proportional odds assumption by fitting logits for each change
ex11<-svyglm(I(afsr>1)~indi+educ+relig+urb+work+insults+hits+touch+sexabuse, des, family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
ex22<-svyglm(I(afsr>2)~indi+educ+relig+urb+work+insults+hits+touch+sexabuse, des, family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
plot(coef(ex11)[-1], ylim=c(-3, 3), type="l",xaxt="n", ylab="Beta", main=c("Comparison of betas for proportional odds assumption"))
lines(coef(ex22)[-1], col=1, lty=2) 
axis(side=1, at=1:13, labels=F)
text(x=1:13, y=-4,  srt = 90, pos = 1, xpd = TRUE,cex=.7,
     labels = c("No indigenous", "None","Basic","High school","Professional","Other religion", "No religion", "Non urban", "Worked > 17", "No insults", "No hits", "No inapp touching", "No sexual abuse"))
legend("topleft", col=c(1,1),lty=c(1,2), legend=c("> 1", "> 2"))
lines(coef(ord2)[c(-12:-13)], col=4, lwd=3)

#Odds ratios
round(exp(rbind(coef(ex11)[-1], coef(ex22)[-1])),3)
##      indi2.no indigenous educ1.none educ2.basic educ4.high school
## [1,]               0.955      0.456       1.415             2.266
## [2,]               0.799      0.287       1.252             2.123
##      educ5.professional relig2.other relig3.none urb2.no urban
## [1,]              6.697        1.037       0.678         1.247
## [2,]              5.796        1.343       0.648         1.405
##      work2.worked >17 insults2.No_insults hits2.No_hits touch2.No_touching
## [1,]            1.466               1.057         1.365              0.782
## [2,]            1.928               0.996         1.436              0.479
##      sexabuse2.No_abuse
## [1,]              5.080
## [2,]              3.197

It seems that when I included the variables of violence in childhood the proportional assumption doesn’t hold. I fitted the model with the non-proportional odds but the AIC was higher than the proportional assumption. I believe I am caught in a dilemma.

library(VGAM)
## Loading required package: stats4
## Loading required package: splines
## 
## Attaching package: 'VGAM'
## The following object is masked from 'package:survey':
## 
##     calibrate
## The following object is masked from 'package:car':
## 
##     logit
#Non-proportional odds for ord2
cum.vgam.ord2<-vglm(as.ordered(eis)~indi+educ+relig+urb+work+insults+hits+touch+sexabuse, enfadea3, weights = pon_muj>0/mean(pon_muj, na.rm=T), family = cumulative(parallel =F, reverse = T))
summary(cum.vgam.ord2)
## 
## Call:
## vglm(formula = as.ordered(eis) ~ indi + educ + relig + urb + 
##     work + insults + hits + touch + sexabuse, family = cumulative(parallel = F, 
##     reverse = T), data = enfadea3, weights = pon_muj > 0/mean(pon_muj, 
##     na.rm = T))
## 
## 
## Pearson residuals:
##                      Min      1Q Median     3Q       Max
## logit(P[Y>=2])      -699 -0.9208 0.2929 0.4640 4.554e+07
## logit(P[Y>=3]) -49286889 -0.5701 0.4367 0.8112 7.463e+02
## 
## Coefficients: 
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept):1         -1.308499   0.081687 -16.018  < 2e-16 ***
## (Intercept):2         -1.278678   0.080312 -15.921  < 2e-16 ***
## indi2.no indigenous:1 -0.214090   0.025295  -8.464  < 2e-16 ***
## indi2.no indigenous:2 -0.206605   0.025242  -8.185 2.73e-16 ***
## educ1.none:1          -1.276573   0.560298  -2.278 0.022704 *  
## educ1.none:2          -0.739398   0.544732      NA       NA    
## educ2.basic:1          0.065431   0.007062   9.265  < 2e-16 ***
## educ2.basic:2          0.120935   0.004533  26.678  < 2e-16 ***
## educ4.high school:1    0.966234   0.092812  10.411  < 2e-16 ***
## educ4.high school:2    0.750416   0.091593   8.193 2.55e-16 ***
## educ5.professional:1   1.426947   0.091836  15.538  < 2e-16 ***
## educ5.professional:2   1.409451   0.091886  15.339  < 2e-16 ***
## relig2.other:1        -0.041143   0.031068  -1.324 0.185408    
## relig2.other:2         0.072853   0.023243   3.134 0.001722 ** 
## relig3.none:1         -0.651858   0.082476  -7.904 2.71e-15 ***
## relig3.none:2         -0.392144   0.077642  -5.051 4.40e-07 ***
## urb2.no urban:1        0.256943   0.030042   8.553  < 2e-16 ***
## urb2.no urban:2        0.283061   0.028408   9.964  < 2e-16 ***
## work2.worked >17:1     0.224403   0.074132      NA       NA    
## work2.worked >17:2     0.485538   0.075169   6.459 1.05e-10 ***
## insults2.No_insults:1  0.071844   0.126629      NA       NA    
## insults2.No_insults:2  0.006314   0.124671   0.051 0.959611    
## hits2.No_hits:1        0.486516   0.133182   3.653 0.000259 ***
## hits2.No_hits:2        0.381294   0.130819   2.915 0.003561 ** 
## touch2.No_touching:1  -0.212641   0.173450  -1.226 0.220216    
## touch2.No_touching:2  -0.427436   0.157748      NA       NA    
## sexabuse2.No_abuse:1   1.146483   0.175105   6.547 5.85e-11 ***
## sexabuse2.No_abuse:2   0.585043   0.172906   3.384 0.000715 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Number of linear predictors:  2 
## 
## Names of linear predictors: logit(P[Y>=2]), logit(P[Y>=3])
## 
## Residual deviance: 4752.131 on 4246 degrees of freedom
## 
## Log-likelihood: NA on 4246 degrees of freedom
## 
## Number of iterations: 2 
## 
## Warning: Hauck-Donner effect detected in the following estimate(s):
## '(Intercept):2', 'indi2.no indigenous:2', 'educ1.none:2', 'educ2.basic:1', 'educ4.high school:1', 'educ5.professional:1', 'relig3.none:2', 'urb2.no urban:1', 'work2.worked >17:1', 'insults2.No_insults:1', 'hits2.No_hits:1', 'touch2.No_touching:2', 'sexabuse2.No_abuse:1'
## 
## Exponentiated coefficients:
## indi2.no indigenous:1 indi2.no indigenous:2          educ1.none:1 
##             0.8072754             0.8133411             0.2789917 
##          educ1.none:2         educ2.basic:1         educ2.basic:2 
##             0.4774014             1.0676187             1.1285515 
##   educ4.high school:1   educ4.high school:2  educ5.professional:1 
##             2.6280281             2.1178804             4.1659599 
##  educ5.professional:2        relig2.other:1        relig2.other:2 
##             4.0937069             0.9596922             1.0755725 
##         relig3.none:1         relig3.none:2       urb2.no urban:1 
##             0.5210768             0.6756071             1.2929710 
##       urb2.no urban:2    work2.worked >17:1    work2.worked >17:2 
##             1.3271863             1.2515749             1.6250483 
## insults2.No_insults:1 insults2.No_insults:2       hits2.No_hits:1 
##             1.0744878             1.0063335             1.6266393 
##       hits2.No_hits:2  touch2.No_touching:1  touch2.No_touching:2 
##             1.4641776             0.8084463             0.6521790 
##  sexabuse2.No_abuse:1  sexabuse2.No_abuse:2 
##             3.1471059             1.7950675