Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern. This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

library("ggplot2")
library("gridExtra")
library("R.utils")
## Loading required package: R.oo
## Loading required package: R.methodsS3
## R.methodsS3 v1.7.1 (2016-02-15) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.21.0 (2016-10-30) successfully loaded. See ?R.oo for help.
## 
## Attaching package: 'R.oo'
## The following objects are masked from 'package:methods':
## 
##     getClasses, getMethods
## The following objects are masked from 'package:base':
## 
##     attach, detach, gc, load, save
## R.utils v2.6.0 (2017-11-04) successfully loaded. See ?R.utils for help.
## 
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
## 
##     timestamp
## The following objects are masked from 'package:base':
## 
##     cat, commandArgs, getOption, inherits, isOpen, parse, warnings

R Markdown

stormData <- read.csv(file="G:/R_Work/StormData/repdata-data-StormData.csv.bz2",header=TRUE)

Summary of the data

summary(stormData)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295

Data Processing

Trim data set for both questions

stormEvent <- stormData [,c("BGN_DATE", "EVTYPE", "FATALITIES", "INJURIES", 
    "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")]
    
eventHealth <- subset (stormEvent, !stormEvent$FATALITIES == 0 & !stormEvent$INJURIES == 0, select = c(EVTYPE, FATALITIES, INJURIES))

eventEconomic <- subset (stormEvent, !stormEvent$PROPDMG == 0 & !stormEvent$CROPDMG == 0, select = c(EVTYPE,PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP ))

Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

Create separate data set for Injury and Fatalities Fatalities

eventHealth$FATALITIES <- as.numeric(eventHealth$FATALITIES)
eventHealth$INJURIES <- as.numeric(eventHealth$INJURIES)

eventHealth_Death <- aggregate(eventHealth$FATALITIES, by =  list(eventHealth$EVTYPE), FUN =sum)

colnames(eventHealth_Death) <- c("EVENTTYPE", "FATALITIES")

eventHealth_Inj <- aggregate(eventHealth$INJURIES, by = list(eventHealth$EVTYPE), FUN = sum)

colnames(eventHealth_Inj) <- c("EVENTTYPE", "INJURIES")

eventHealth_Death <- eventHealth_Death[order(eventHealth_Death$FATALITIES, decreasing = TRUE),][1:5, ]

eventHealth_Inj <- eventHealth_Inj[order(eventHealth_Inj$INJURIES, decreasing = TRUE), ][1:5, ]

Results

Populate the top 5 major cause of Both fatalities and injuriees

# plot top 5 events for fatalities and injuries
# Plot Fatalities and store at Death_plot

Death_plot <- ggplot() + geom_bar(data = eventHealth_Death, aes(x = EVENTTYPE,y = FATALITIES, fill = interaction(FATALITIES, EVENTTYPE)), stat = "identity",  show.legend = F) + theme(axis.text.x = element_text(angle = 30, hjust = 1)) +   xlab("Harmful Events") + ylab("No. of fatailities") + ggtitle("Top 5 weather events causing fatalities") + theme(axis.text.x = element_text(angle = 30, hjust = 1))

# Plot injuries and store at variable Inj_plot
Inj_plot <- ggplot() + geom_bar(data = eventHealth_Inj, aes(x = EVENTTYPE, y = INJURIES, fill = interaction(INJURIES, EVENTTYPE)), stat = "identity", show.legend = F) +   theme(axis.text.x = element_text(angle = 30, hjust = 1)) + xlab("Harmful Events") +     ylab("No. of Injuries") + ggtitle("Top 5 weather events causing Injuries") + theme(axis.text.x = element_text(angle = 30, hjust = 1))

grid.arrange(Death_plot, Inj_plot, ncol = 2)

## We can easily see that Tornado is the major cause with respect to population health, both for causing fatalities and injuries.

2. Across the United States, which types of events have the greatest economic consequences?

Data Processing

eventEconomic <- subset(eventEconomic, eventEconomic$PROPDMGEXP == "K" | eventEconomic$PROPDMGEXP == "k" | eventEconomic$PROPDMGEXP == "M" | eventEconomic$PROPDMGEXP == "m" |eventEconomic$PROPDMGEXP == "B" | eventEconomic$PROPDMGEXP == "b")

eventEconomic <- subset(eventEconomic, eventEconomic$CROPDMGEXP == "K" | eventEconomic$CROPDMGEXP == "k" | eventEconomic$CROPDMGEXP == "M" | eventEconomic$CROPDMGEXP == "m" | eventEconomic$CROPDMGEXP == "B" | eventEconomic$CROPDMGEXP == "b")

# Convert ecnomic values to number
eventEconomic$PROPDMGEXP <- gsub("m", 1e+06, eventEconomic$PROPDMGEXP, ignore.case = TRUE)
eventEconomic$PROPDMGEXP <- gsub("k", 1000, eventEconomic$PROPDMGEXP, ignore.case = TRUE)
eventEconomic$PROPDMGEXP <- gsub("b", 1e+09, eventEconomic$PROPDMGEXP, ignore.case = TRUE)
eventEconomic$PROPDMGEXP <- as.numeric(eventEconomic$PROPDMGEXP)
eventEconomic$CROPDMGEXP <- gsub("m", 1e+06, eventEconomic$CROPDMGEXP, ignore.case = TRUE)
eventEconomic$CROPDMGEXP <- gsub("k", 1000, eventEconomic$CROPDMGEXP, ignore.case = TRUE)
eventEconomic$CROPDMGEXP <- gsub("b", 1e+09, eventEconomic$CROPDMGEXP, ignore.case = TRUE)
eventEconomic$CROPDMGEXP <- as.numeric(eventEconomic$CROPDMGEXP)
eventEconomic$PROPDMGEXP <- as.numeric(eventEconomic$PROPDMGEXP)

eventEconomic$TOTALDMG <- (eventEconomic$CROPDMG * eventEconomic$CROPDMGEXP) +  (eventEconomic$PROPDMG * eventEconomic$PROPDMGEXP)

eventEconomic$TOTALDMG <- as.numeric(eventEconomic$TOTALDMG)


eventEconomic_DMG <- cbind(eventEconomic,eventEconomic$TOTALDMG)
#eventEconomic_DMG <- aggregate(eventEconomic$TOTALDMG, by = list(eventEconomic$EVTYPE), FUN = sum)

colnames(eventEconomic_DMG) <- c("EVTYPE", "TOTALDMG")

#
#eventEconomic <- aggregate(eventEconomic$TOTALDMG, by = list(eventEconomic$EVTYPE), FUN = sum)


#eventEconomic <- eventEconomic[order(eventEconomic$TOTALDMG), decreasing = TRUE,] 
eventEconomic <- eventEconomic[1:5, ]

Results

Now plot the graph

ggplot() + geom_bar(data = eventEconomic, aes(x = EVTYPE, y = TOTALDMG, fill = interaction(TOTALDMG, EVTYPE)), stat = "identity", show.legend = F) + theme(axis.text.x = element_text(angle = 30, hjust = 1)) + xlab("Event Type") + ylab("Total Damage")

Summary

From these data and graphs, we found that Tornado are most harmful with respect to population health, while Flood have the greatest economic consequences.