Problem Set 1
Solution
- Each row/column is independent therefore, the rank of the matrix A is 4. This can be calculated in R as follows
A <- cbind(c(1,-1,0,5),c(2,0,1,4), c(3,1,-2,-2),c(4,3,1,-3))
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
Ans <- qr(A)
RankA <- Ans$rank
RankA
## [1] 4
For a mxn matrix if m > n, the maximum rank is n. Assuming the matrix is non-zero, the minimum rank is 1.
The rank of the matrix B is 1. The first column is independent. The second is twice the first column and therefore not independent. The third column is half the second column and therefore also not independent.
B <- cbind(c(1,3,2), c(2,6,4), c(1,3,2))
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
Ans <- qr(B)
RankB <- Ans$rank
RankB
## [1] 1
Problem Set 2
Solution
The characteristic polynomial is determined as follows:
\(A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{bmatrix}\)
\(det\begin{Bmatrix} \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{bmatrix} = 0 \end{Bmatrix}\)
\(det \begin{bmatrix} \lambda - 1 & 2 & 3 \\ 0 & \lambda - 4 & 5 \\ 0 & 0 & \lambda - 6 \end{bmatrix} = 0\)
\((\lambda-1)[(\lambda - 4)(\lambda - 6) - 0]-2(0)+3(0) = 0\)
\((\lambda - 1)(\lambda^2 - 10\lambda +24) = 0\)
\(\lambda^3 - 11\lambda^2+34\lambda-24 = 0\) => This is the characteristic polynomial
To find eigen values
If we back track to this line \((\lambda - 1)(\lambda^2 - 10\lambda +24) = 0\)
we can see that \(\lambda - 1 = 0\), therefore \(\lambda = 1\)
The other eigen values can be found by factorising the other part of the equation \((\lambda - 1)(\lambda^2 - 10\lambda +24) = 0\) and therefore \((\lambda^2 - 10\lambda +24) = 0\)
By factorisation \((\lambda - 6)(\lambda - 4) = 0\)
Therefore if \(\lambda - 6 = 0, \lambda = 6\) and if \(\lambda - 4 = 0, \lambda = 4\)
The eigen values are 1, 4, and 6
This can also be calculated using R. See below for calculation of eigen values and vectors.
Ab <- cbind(c(1,0,0),c(2,4,0),c(3,5,6))
Ab
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
Ans <- eigen(Ab)
Ans$values
## [1] 6 4 1
Ans$vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0