CUNY MSDS DATA 607 Project 1

Nicholas Schettini

2018-02-18

Task:

In this project, you’re given a text file with chess tournament results where the information has some structure. Your job is to create an R Markdown file that generates a .CSV file (that could for example be imported into a SQL database) with the following information for all of the players: 

Player’s Name, Player’s State, Total Number of Points, Player’s Pre-Rating, and Average Pre Chess Rating of Opponents For the first player, the information would be: 

Gary Hua, ON, 6.0, 1794, 1605 

1605 was calculated by using the pre-tournament opponents’ ratings of 1436, 1563, 1600, 1610, 1649, 1663, 1716, and dividing by the total number of games played

Libraries:

library(RCurl)
library(knitr)
library(kableExtra)
library(tidyverse)
library(stringr)

Access the chess data from github:

my.data <- readLines("https://cdn.rawgit.com/nschettini/CUNY-MSDS-DATA-607/5ccd9c39/tournamentinfo.txt", warn = F)
head(my.data, 22)
##  [1] "-----------------------------------------------------------------------------------------" 
##  [2] " Pair | Player Name                     |Total|Round|Round|Round|Round|Round|Round|Round| "
##  [3] " Num  | USCF ID / Rtg (Pre->Post)       | Pts |  1  |  2  |  3  |  4  |  5  |  6  |  7  | "
##  [4] "-----------------------------------------------------------------------------------------" 
##  [5] "    1 | GARY HUA                        |6.0  |W  39|W  21|W  18|W  14|W   7|D  12|D   4|" 
##  [6] "   ON | 15445895 / R: 1794   ->1817     |N:2  |W    |B    |W    |B    |W    |B    |W    |" 
##  [7] "-----------------------------------------------------------------------------------------" 
##  [8] "    2 | DAKSHESH DARURI                 |6.0  |W  63|W  58|L   4|W  17|W  16|W  20|W   7|" 
##  [9] "   MI | 14598900 / R: 1553   ->1663     |N:2  |B    |W    |B    |W    |B    |W    |B    |" 
## [10] "-----------------------------------------------------------------------------------------" 
## [11] "    3 | ADITYA BAJAJ                    |6.0  |L   8|W  61|W  25|W  21|W  11|W  13|W  12|" 
## [12] "   MI | 14959604 / R: 1384   ->1640     |N:2  |W    |B    |W    |B    |W    |B    |W    |" 
## [13] "-----------------------------------------------------------------------------------------" 
## [14] "    4 | PATRICK H SCHILLING             |5.5  |W  23|D  28|W   2|W  26|D   5|W  19|D   1|" 
## [15] "   MI | 12616049 / R: 1716   ->1744     |N:2  |W    |B    |W    |B    |W    |B    |B    |" 
## [16] "-----------------------------------------------------------------------------------------" 
## [17] "    5 | HANSHI ZUO                      |5.5  |W  45|W  37|D  12|D  13|D   4|W  14|W  17|" 
## [18] "   MI | 14601533 / R: 1655   ->1690     |N:2  |B    |W    |B    |W    |B    |W    |B    |" 
## [19] "-----------------------------------------------------------------------------------------" 
## [20] "    6 | HANSEN SONG                     |5.0  |W  34|D  29|L  11|W  35|D  10|W  27|W  21|" 
## [21] "   OH | 15055204 / R: 1686   ->1687     |N:3  |W    |B    |W    |B    |B    |W    |B    |" 
## [22] "-----------------------------------------------------------------------------------------"

Looking at the data from the provided .txt file, you can notice that a lot of it isn’t needed for our task. We can clean this data by the following:  

Running the following code: seq(from, to, by) will allow to pull only the rows that have data that is needed. This will make it easier to manipulate with regular expressions to pull out information from the data.

#starts at column 5, increases to the length of the data, by 3 (# of rows till next useful data needed - name, pts)
data1 <- c(seq(5, length(my.data),3))
#starts at column 6, increases to the length of the data, by 3 (# of rows till next useful data needed - state, rank)
data2 <- c(seq(6, length(my.data),3))

Manipulate the data:

Expressions used to pull out necessary data (name, state, total_points, pre_raiting):

#regex to pull out only the name from data1
name <- str_replace_all(str_extract(my.data[data1],"([|]).+?\\1"),"[|]","")
#pull out state from data2
state <- str_extract(my.data[data2], "[A-Z]{2}" )
#pull out total points from data 1 - I noticed points is the only # as a float
total_points <- str_extract(my.data[data1], "\\d.\\d")
#pull out pre raiting.  Had to pull out [R: score] then replace the "R: " with a blank character.
pre_raiting1 <- as.integer(str_replace_all(str_extract(my.data[data2], "R: \\s?\\d{3,4}"), "R:\\s", ""))
#pull out player number
player_num <- as.integer(str_extract(my.data[data1], "\\d+"))
#used https://regexr.com/ to copy/paste the text file.  This made it possible to play around with combinations of regex in real time

Place the extracted data into a data.frame, then into a kable table:

df1 <- data.frame(name, state, player_num, total_points, pre_raiting1)
kable(head(df1, 20), "html", escape = F) %>%
  kable_styling("striped", full_width = F, font_size = 15) %>%
  column_spec(1:2, bold = T)
name state player_num total_points pre_raiting1
GARY HUA ON 1 6.0 1794
DAKSHESH DARURI MI 2 6.0 1553
ADITYA BAJAJ MI 3 6.0 1384
PATRICK H SCHILLING MI 4 5.5 1716
HANSHI ZUO MI 5 5.5 1655
HANSEN SONG OH 6 5.0 1686
GARY DEE SWATHELL MI 7 5.0 1649
EZEKIEL HOUGHTON MI 8 5.0 1641
STEFANO LEE ON 9 5.0 1411
ANVIT RAO MI 10 5.0 1365
CAMERON WILLIAM MC LEMAN MI 11 4.5 1712
KENNETH J TACK MI 12 4.5 1663
TORRANCE HENRY JR MI 13 4.5 1666
BRADLEY SHAW MI 14 4.5 1610
ZACHARY JAMES HOUGHTON MI 15 4.5 1220
MIKE NIKITIN MI 16 4.0 1604
RONALD GRZEGORCZYK MI 17 4.0 1629
DAVID SUNDEEN MI 18 4.0 1600
DIPANKAR ROY MI 19 4.0 1564
JASON ZHENG MI 20 4.0 1595

Manipulating data to find opponets scores:

First pulled out “opponent” numbers.

opponent1 <- str_extract_all(my.data[data1], "\\d+\\|")
opponent <- str_extract_all(opponent1,"\\d+")
head(opponent)
## [[1]]
## [1] "39" "21" "18" "14" "7"  "12" "4" 
## 
## [[2]]
## [1] "63" "58" "4"  "17" "16" "20" "7" 
## 
## [[3]]
## [1] "8"  "61" "25" "21" "11" "13" "12"
## 
## [[4]]
## [1] "23" "28" "2"  "26" "5"  "19" "1" 
## 
## [[5]]
## [1] "45" "37" "12" "13" "4"  "14" "17"
## 
## [[6]]
## [1] "34" "29" "11" "35" "10" "27" "21"

Created loop to calculate the opponents pre raiting score

opponent_preraiting <- numeric(length(data1))

for (i in 1:(length(data1))){
  opponent_preraiting[i] <- mean(pre_raiting1[as.numeric(unlist(opponent[i]))])
}

opponent_preraiting <- round(opponent_preraiting,0)
df2 <- data.frame(name, state, player_num, total_points, pre_raiting1, opponent_preraiting)



kable(df2, "html", escape = F) %>%
  kable_styling("striped", full_width = F, font_size = 15) %>%
  column_spec(1:2, bold = T)
name state player_num total_points pre_raiting1 opponent_preraiting
GARY HUA ON 1 6.0 1794 1605
DAKSHESH DARURI MI 2 6.0 1553 1469
ADITYA BAJAJ MI 3 6.0 1384 1564
PATRICK H SCHILLING MI 4 5.5 1716 1574
HANSHI ZUO MI 5 5.5 1655 1501
HANSEN SONG OH 6 5.0 1686 1519
GARY DEE SWATHELL MI 7 5.0 1649 1372
EZEKIEL HOUGHTON MI 8 5.0 1641 1468
STEFANO LEE ON 9 5.0 1411 1523
ANVIT RAO MI 10 5.0 1365 1554
CAMERON WILLIAM MC LEMAN MI 11 4.5 1712 1468
KENNETH J TACK MI 12 4.5 1663 1506
TORRANCE HENRY JR MI 13 4.5 1666 1498
BRADLEY SHAW MI 14 4.5 1610 1515
ZACHARY JAMES HOUGHTON MI 15 4.5 1220 1484
MIKE NIKITIN MI 16 4.0 1604 1386
RONALD GRZEGORCZYK MI 17 4.0 1629 1499
DAVID SUNDEEN MI 18 4.0 1600 1480
DIPANKAR ROY MI 19 4.0 1564 1426
JASON ZHENG MI 20 4.0 1595 1411
DINH DANG BUI ON 21 4.0 1563 1470
EUGENE L MCCLURE MI 22 4.0 1555 1300
ALAN BUI ON 23 4.0 1363 1214
MICHAEL R ALDRICH MI 24 4.0 1229 1357
LOREN SCHWIEBERT MI 25 3.5 1745 1363
MAX ZHU ON 26 3.5 1579 1507
GAURAV GIDWANI MI 27 3.5 1552 1222
SOFIA ADINA STANESCU-BELLU MI 28 3.5 1507 1522
CHIEDOZIE OKORIE MI 29 3.5 1602 1314
GEORGE AVERY JONES ON 30 3.5 1522 1144
RISHI SHETTY MI 31 3.5 1494 1260
JOSHUA PHILIP MATHEWS ON 32 3.5 1441 1379
JADE GE MI 33 3.5 1449 1277
MICHAEL JEFFERY THOMAS MI 34 3.5 1399 1375
JOSHUA DAVID LEE MI 35 3.5 1438 1150
SIDDHARTH JHA MI 36 3.5 1355 1388
AMIYATOSH PWNANANDAM MI 37 3.5 980 1385
BRIAN LIU MI 38 3.0 1423 1539
JOEL R HENDON MI 39 3.0 1436 1430
FOREST ZHANG MI 40 3.0 1348 1391
KYLE WILLIAM MURPHY MI 41 3.0 1403 1248
JARED GE MI 42 3.0 1332 1150
ROBERT GLEN VASEY MI 43 3.0 1283 1107
JUSTIN D SCHILLING MI 44 3.0 1199 1327
DEREK YAN MI 45 3.0 1242 1152
JACOB ALEXANDER LAVALLEY MI 46 3.0 377 1358
ERIC WRIGHT MI 47 2.5 1362 1392
DANIEL KHAIN MI 48 2.5 1382 1356
MICHAEL J MARTIN MI 49 2.5 1291 1286
SHIVAM JHA MI 50 2.5 1056 1296
TEJAS AYYAGARI MI 51 2.5 1011 1356
ETHAN GUO MI 52 2.5 935 1495
JOSE C YBARRA MI 53 2.0 1393 1345
LARRY HODGE MI 54 2.0 1270 1206
ALEX KONG MI 55 2.0 1186 1406
MARISA RICCI MI 56 2.0 1153 1414
MICHAEL LU MI 57 2.0 1092 1363
VIRAJ MOHILE MI 58 2.0 917 1391
SEAN M MC CORMICK MI 59 2.0 853 1319
JULIA SHEN MI 60 1.5 967 1330
JEZZEL FARKAS ON 61 1.5 955 1327
ASHWIN BALAJI MI 62 1.0 1530 1186
THOMAS JOSEPH HOSMER MI 63 1.0 1175 1350
BEN LI MI 64 1.0 1163 1263

Save to a .CSV file

write.table(df2, file = "C:/Users/nicsc/Documents/DATA_607_Project1.csv", sep = ",", col.names = T)
ggplot(df2, aes(opponent_preraiting, pre_raiting1)) + geom_point(aes(color = total_points)) +
  xlab("Opponet's Preraiting") +
  ylab("Player's Preraiting") +
  geom_smooth() +
  geom_vline(xintercept=mean(opponent_preraiting), col='red') +
    geom_vline(xintercept=median(opponent_preraiting), col='orange')
## `geom_smooth()` using method = 'loess'