air.df<-read.csv("SixAirlinesDataV2.csv", sep = ",")
View(air.df)
summary(air.df)
##       Airline      Aircraft   FlightDuration   TravelMonth
##  AirFrance: 74   AirBus:151   Min.   : 1.250   Aug:127    
##  British  :175   Boeing:307   1st Qu.: 4.260   Jul: 75    
##  Delta    : 46                Median : 7.790   Oct:127    
##  Jet      : 61                Mean   : 7.578   Sep:129    
##  Singapore: 40                3rd Qu.:10.620              
##  Virgin   : 62                Max.   :14.660              
##       IsInternational  SeatsEconomy    SeatsPremium    PitchEconomy  
##  Domestic     : 40    Min.   : 78.0   Min.   : 8.00   Min.   :30.00  
##  International:418    1st Qu.:133.0   1st Qu.:21.00   1st Qu.:31.00  
##                       Median :185.0   Median :36.00   Median :31.00  
##                       Mean   :202.3   Mean   :33.65   Mean   :31.22  
##                       3rd Qu.:243.0   3rd Qu.:40.00   3rd Qu.:32.00  
##                       Max.   :389.0   Max.   :66.00   Max.   :33.00  
##   PitchPremium    WidthEconomy    WidthPremium    PriceEconomy 
##  Min.   :34.00   Min.   :17.00   Min.   :17.00   Min.   :  65  
##  1st Qu.:38.00   1st Qu.:18.00   1st Qu.:19.00   1st Qu.: 413  
##  Median :38.00   Median :18.00   Median :19.00   Median :1242  
##  Mean   :37.91   Mean   :17.84   Mean   :19.47   Mean   :1327  
##  3rd Qu.:38.00   3rd Qu.:18.00   3rd Qu.:21.00   3rd Qu.:1909  
##  Max.   :40.00   Max.   :19.00   Max.   :21.00   Max.   :3593  
##   PricePremium    PriceRelative      SeatsTotal  PitchDifference 
##  Min.   :  86.0   Min.   :0.0200   Min.   : 98   Min.   : 2.000  
##  1st Qu.: 528.8   1st Qu.:0.1000   1st Qu.:166   1st Qu.: 6.000  
##  Median :1737.0   Median :0.3650   Median :227   Median : 7.000  
##  Mean   :1845.3   Mean   :0.4872   Mean   :236   Mean   : 6.688  
##  3rd Qu.:2989.0   3rd Qu.:0.7400   3rd Qu.:279   3rd Qu.: 7.000  
##  Max.   :7414.0   Max.   :1.8900   Max.   :441   Max.   :10.000  
##  WidthDifference PercentPremiumSeats
##  Min.   :0.000   Min.   : 4.71      
##  1st Qu.:1.000   1st Qu.:12.28      
##  Median :1.000   Median :13.21      
##  Mean   :1.633   Mean   :14.65      
##  3rd Qu.:3.000   3rd Qu.:15.36      
##  Max.   :4.000   Max.   :24.69
hist(air.df$FlightDuration,
     main = "Scatter Plot Diagram for Flight Duration",
     xlab = "Flight Duration")

plot(air.df$TravelMonth,
     main = "Scatter Plot Diagram for Travel Month",
     xlab = "Travel Months")

hist(air.df$PriceEconomy,
     main = "Scatter Plot Diagram for Price Economy",
     xlab = "Price Economy")

hist(air.df$PricePremium,
     main = "Scatter Plot Diagram for Price Premium",
     xlab = "Price Premium")

par(mfrow=c(1, 2))
plot(air.df$FlightDuration,air.df$PriceEconomy,
     main = "Flight Duration vs Economic Price",
     xlab = "Flight Duration",
     ylab = "Price Economy")
plot(air.df$FlightDuration,air.df$PricePremium,
     main = " Flight Duration vs Premium Price",
     xlab = "Flight Duration",
     ylab = "Price Premium")

par(mfrow=c(1, 1))
par(mfrow=c(1, 2))
plot(air.df$TravelMonth,air.df$PriceEconomy,
     main = "Flight Duration vs Economic Price",
     xlab = "Travel Month",
     ylab = "Price Economy")
plot(air.df$TravelMonth,air.df$PricePremium,
     main = " Flight Duration vs Premium Price",
     xlab = "Travel Month",
     ylab = "Price Premium")

par(mfrow=c(1, 1))
library(car)
scatterplotMatrix(air.df[,c("FlightDuration","TravelMonth","PriceEconomy","PricePremium")], 
                  spread=FALSE, smoother.args=list(lty=2),
                  main="Scatter Plot Matrix")

library(corrgram)
corrgram(air.df, order=FALSE, 
         lower.panel=panel.shade,
         upper.panel=panel.pie, 
         diag.panel=panel.minmax,
         text.panel=panel.txt,
         main="Corrgram of Airlines Data")

options(digits=2)
cor(air.df$FlightDuration, air.df$PriceEconomy)
## [1] 0.57
cor(air.df$FlightDuration, air.df$PricePremium)
## [1] 0.65
cor.test(air.df[,"FlightDuration"], air.df[,"PriceEconomy"])
## 
##  Pearson's product-moment correlation
## 
## data:  air.df[, "FlightDuration"] and air.df[, "PriceEconomy"]
## t = 10, df = 500, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.50 0.63
## sample estimates:
##  cor 
## 0.57
cor.test(air.df[,"FlightDuration"], air.df[,"PricePremium"])
## 
##  Pearson's product-moment correlation
## 
## data:  air.df[, "FlightDuration"] and air.df[, "PricePremium"]
## t = 20, df = 500, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.59 0.70
## sample estimates:
##  cor 
## 0.65

```

m1 <- lm(PriceEconomy ~ 
           FlightDuration
           + TravelMonth, 
         data=air.df)
summary(m1)
## 
## Call:
## lm(formula = PriceEconomy ~ FlightDuration + TravelMonth, data = air.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -1770   -502   -169    471   1902 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       127.6      110.4    1.16     0.25    
## FlightDuration    158.3       10.8   14.63   <2e-16 ***
## TravelMonthJul     36.3      119.2    0.30     0.76    
## TravelMonthOct    -39.6      102.6   -0.39     0.70    
## TravelMonthSep     16.6      102.2    0.16     0.87    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 817 on 453 degrees of freedom
## Multiple R-squared:  0.322,  Adjusted R-squared:  0.316 
## F-statistic: 53.7 on 4 and 453 DF,  p-value: <2e-16
m1 <- lm(PricePremium ~ 
           FlightDuration
           + TravelMonth, 
         data=air.df)
summary(m1)
## 
## Call:
## lm(formula = PricePremium ~ FlightDuration + TravelMonth, data = air.df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -2300   -664   -112    793   4113 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       56.48     132.91    0.42     0.67    
## FlightDuration   236.08      13.03   18.12   <2e-16 ***
## TravelMonthJul    22.14     143.61    0.15     0.88    
## TravelMonthOct   -20.55     123.55   -0.17     0.87    
## TravelMonthSep     6.76     123.07    0.05     0.96    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 984 on 453 degrees of freedom
## Multiple R-squared:  0.421,  Adjusted R-squared:  0.416 
## F-statistic: 82.3 on 4 and 453 DF,  p-value: <2e-16

``` Inferences: Though Both premium and economy seats are equal, people prefer economy more. Travel Month and Travel Duration are the prime two factors which effect the prices of the tickets.