Examining Cancer Deaths in New York State by Race, 2007-2013


Reading in Dataset and Loading Packages

library(readr)
library(dplyr)
library(ggplot2)
library(tidyverse)
library(magrittr)
CancDataset <- read_csv("C:/Users/Raven/Desktop/CanDataset.csv")

Viewing Data

print(CancDataset)

Selecting Variables

CancDataset2 <- select(CancDataset, 
               SE_T011_002,SE_T011_003,SE_T011_004,SE_T011_005,SE_T011_006, SE_T011_007)  

Renaming Variables

  • “white”
  • “whitenonhisp” = White non-Hispanic
  • “black”
  • “blacknonhisp” = Black non-Hispanic
  • “asianpacific” = Asian/Pacific Islander
  • “nativeamerican” = Native American or Alaska Native
CancDataset2 <- rename (CancDataset2, 
               "white" = SE_T011_002, 
               "whitenonhisp" = SE_T011_003, 
               "black" = SE_T011_004, 
               "blacknonhisp" = SE_T011_005, 
               "asianpacific" = SE_T011_006, 
               "nativeamerican" = SE_T011_007)

Using one Script to Select and Rename Variables with Magrittr

CancDataset3 <- CancDataset%>%
  select (SE_T011_002,SE_T011_003,SE_T011_004,SE_T011_005,SE_T011_006, SE_T011_007)%>%
  rename("white" = SE_T011_002, 
         "whitenonhisp" = SE_T011_003, 
         "black" = SE_T011_004, 
         "blacknonhisp" = SE_T011_005, 
         "asianpacific" = SE_T011_006, 
         "nativeamerican" = SE_T011_007)%>%
  
print(CancDataset3)

Creating a GGplot

  • Arranging data
CancDataset5= data.frame(race)
race <- c("White", "White(non-Hispanic)","Black","Black(non-Hispanic)", "Asian/Pacific Islander", "Native American")
deaths <- c(167.6, 169.2, 163.2, 179.1, 97.2, 45.4)
  • Creating Graph (Number of Cancer Deaths in New York State by Race, 2007-2013)
ggplot(data = CancDataset5)+
   geom_col (aes(x=race, y=deaths))+ 
   xlab("Race") + ylab("Number of Cancer Deaths")+ 
   coord_flip()

LS0tDQp0aXRsZTogIlNvYzcxMiBIVyAjMiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQojI0V4YW1pbmluZyBDYW5jZXIgRGVhdGhzIGluIE5ldyBZb3JrIFN0YXRlIGJ5IFJhY2UsIDIwMDctMjAxMyANCioqKg0KIyMjUmVhZGluZyBpbiBEYXRhc2V0IGFuZCBMb2FkaW5nIFBhY2thZ2VzIA0KYGBge3J9IA0KbGlicmFyeShyZWFkcikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkobWFncml0dHIpDQpDYW5jRGF0YXNldCA8LSByZWFkX2NzdigiQzovVXNlcnMvUmF2ZW4vRGVza3RvcC9DYW5EYXRhc2V0LmNzdiIpDQpgYGANCiMjI1ZpZXdpbmcgRGF0YQ0KYGBge3J9DQpwcmludChDYW5jRGF0YXNldCkNCmBgYA0KIyMjU2VsZWN0aW5nIFZhcmlhYmxlcw0KYGBge3J9DQpDYW5jRGF0YXNldDIgPC0gc2VsZWN0KENhbmNEYXRhc2V0LCANCiAgICAgICAgICAgICAgIFNFX1QwMTFfMDAyLFNFX1QwMTFfMDAzLFNFX1QwMTFfMDA0LFNFX1QwMTFfMDA1LFNFX1QwMTFfMDA2LCBTRV9UMDExXzAwNykgIA0KYGBgDQojIyNSZW5hbWluZyBWYXJpYWJsZXMgDQoqICJ3aGl0ZSINCiogIndoaXRlbm9uaGlzcCIgPSBXaGl0ZSBub24tSGlzcGFuaWMNCiogImJsYWNrIg0KKiAiYmxhY2tub25oaXNwIiA9IEJsYWNrIG5vbi1IaXNwYW5pYw0KKiAiYXNpYW5wYWNpZmljIiA9IEFzaWFuL1BhY2lmaWMgSXNsYW5kZXIgDQoqICJuYXRpdmVhbWVyaWNhbiIgPSBOYXRpdmUgQW1lcmljYW4gb3IgQWxhc2thIE5hdGl2ZQ0KYGBge3J9DQpDYW5jRGF0YXNldDIgPC0gcmVuYW1lIChDYW5jRGF0YXNldDIsIA0KICAgICAgICAgICAgICAgIndoaXRlIiA9IFNFX1QwMTFfMDAyLCANCiAgICAgICAgICAgICAgICJ3aGl0ZW5vbmhpc3AiID0gU0VfVDAxMV8wMDMsIA0KICAgICAgICAgICAgICAgImJsYWNrIiA9IFNFX1QwMTFfMDA0LCANCiAgICAgICAgICAgICAgICJibGFja25vbmhpc3AiID0gU0VfVDAxMV8wMDUsIA0KICAgICAgICAgICAgICAgImFzaWFucGFjaWZpYyIgPSBTRV9UMDExXzAwNiwgDQogICAgICAgICAgICAgICAibmF0aXZlYW1lcmljYW4iID0gU0VfVDAxMV8wMDcpDQpgYGANCiMjI1VzaW5nIG9uZSBTY3JpcHQgdG8gU2VsZWN0IGFuZCBSZW5hbWUgVmFyaWFibGVzIHdpdGggTWFncml0dHINCmBgYHtyfQ0KQ2FuY0RhdGFzZXQzIDwtIENhbmNEYXRhc2V0JT4lDQogIHNlbGVjdCAoU0VfVDAxMV8wMDIsU0VfVDAxMV8wMDMsU0VfVDAxMV8wMDQsU0VfVDAxMV8wMDUsU0VfVDAxMV8wMDYsIFNFX1QwMTFfMDA3KSU+JQ0KICByZW5hbWUoIndoaXRlIiA9IFNFX1QwMTFfMDAyLCANCiAgICAgICAgICJ3aGl0ZW5vbmhpc3AiID0gU0VfVDAxMV8wMDMsIA0KICAgICAgICAgImJsYWNrIiA9IFNFX1QwMTFfMDA0LCANCiAgICAgICAgICJibGFja25vbmhpc3AiID0gU0VfVDAxMV8wMDUsIA0KICAgICAgICAgImFzaWFucGFjaWZpYyIgPSBTRV9UMDExXzAwNiwgDQogICAgICAgICAibmF0aXZlYW1lcmljYW4iID0gU0VfVDAxMV8wMDcpJT4lDQogIA0KcHJpbnQoQ2FuY0RhdGFzZXQzKQ0KDQpgYGANCiMjI0NyZWF0aW5nIGEgR0dwbG90IA0KICogQXJyYW5naW5nIGRhdGENCmBgYHtyfQ0KQ2FuY0RhdGFzZXQ1PSBkYXRhLmZyYW1lKHJhY2UpDQpyYWNlIDwtIGMoIldoaXRlIiwgIldoaXRlKG5vbi1IaXNwYW5pYykiLCJCbGFjayIsIkJsYWNrKG5vbi1IaXNwYW5pYykiLCAiQXNpYW4vUGFjaWZpYyBJc2xhbmRlciIsICJOYXRpdmUgQW1lcmljYW4iKQ0KZGVhdGhzIDwtIGMoMTY3LjYsIDE2OS4yLCAxNjMuMiwgMTc5LjEsIDk3LjIsIDQ1LjQpDQpgYGANCiogQ3JlYXRpbmcgR3JhcGggKE51bWJlciBvZiBDYW5jZXIgRGVhdGhzIGluIE5ldyBZb3JrIFN0YXRlIGJ5IFJhY2UsIDIwMDctMjAxMykNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBDYW5jRGF0YXNldDUpKw0KICAgZ2VvbV9jb2wgKGFlcyh4PXJhY2UsIHk9ZGVhdGhzKSkrIA0KICAgeGxhYigiUmFjZSIpICsgeWxhYigiTnVtYmVyIG9mIENhbmNlciBEZWF0aHMiKSsgDQogICBjb29yZF9mbGlwKCkNCmBgYA0KDQoNCg0KDQo=