Approach 1: common pool, SS/HT comparison controlling for gender

So, to repeat the original article lines we need to run regressions on the following variables:

  1. Voluntariness:
## 
## Call:
## lm(formula = voluntary ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7624 -0.1786  0.0052  0.2897  0.5288 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -0.151824   0.061359   -2.47   0.0135 * 
## careertypeHT  0.051057   0.026705    1.91   0.0561 . 
## age           0.002198   0.000889    2.47   0.0136 * 
## education     0.005653   0.002438    2.32   0.0206 * 
## sector1      -0.070797   0.045940   -1.54   0.1236   
## sector2      -0.080394   0.068692   -1.17   0.2421   
## sector3      -0.047542   0.023731   -2.00   0.0454 * 
## sector4       0.003043   0.050940    0.06   0.9524   
## sector5      -0.044170   0.033468   -1.32   0.1871   
## sector6      -0.071733   0.026913   -2.67   0.0078 **
## sector7       0.045200   0.061071    0.74   0.4594   
## sector8       0.016904   0.034720    0.49   0.6264   
## sector9       0.064154   0.042291    1.52   0.1295   
## sector10      0.201433   0.142689    1.41   0.1583   
## sector11      0.027021   0.026096    1.04   0.3007   
## sector12     -0.013175   0.028328   -0.47   0.6420   
## sector13      0.006741   0.031627    0.21   0.8313   
## gender1       0.031251   0.010172    3.07   0.0022 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.305 on 1279 degrees of freedom
##   (559 observations deleted due to missingness)
## Multiple R-squared: 0.0357,  Adjusted R-squared: 0.0229 
## F-statistic: 2.79 on 17 and 1279 DF,  p-value: 0.000132
  1. Age (included as a control variable here - SKIP)

SUBJECTIVE CAREER SUCCESS INDICATORS

  1. Career satisfaction
## 
## Call:
## lm(formula = satisfaction ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.496 -0.400 -0.189  0.583  0.998 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.53542    0.16796   -3.19  0.00147 ** 
## careertypeHT -0.01106    0.06953   -0.16  0.87361    
## age           0.00884    0.00227    3.89  0.00011 ***
## education     0.01231    0.00574    2.15  0.03203 *  
## sector1       0.15062    0.09487    1.59  0.11264    
## sector2      -0.24600    0.16969   -1.45  0.14743    
## sector3      -0.09797    0.05701   -1.72  0.08603 .  
## sector4       0.29220    0.11702    2.50  0.01267 *  
## sector5       0.07326    0.07795    0.94  0.34750    
## sector6       0.00169    0.06716    0.03  0.97998    
## sector7      -0.07115    0.16900   -0.42  0.67382    
## sector8       0.02294    0.08830    0.26  0.79508    
## sector9       0.13651    0.10426    1.31  0.19072    
## sector10     -0.41961    0.42264   -0.99  0.32101    
## sector11      0.06250    0.06683    0.94  0.34987    
## sector12      0.13693    0.06386    2.14  0.03225 *  
## sector13      0.01017    0.07877    0.13  0.89726    
## gender1       0.02547    0.02330    1.09  0.27460    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.635 on 1085 degrees of freedom
##   (753 observations deleted due to missingness)
## Multiple R-squared: 0.0441,  Adjusted R-squared: 0.0291 
## F-statistic: 2.94 on 17 and 1085 DF,  p-value: 5.48e-05
  1. Career disappointments
## 
## Call:
## lm(formula = disappointment ~ careertype + age + education + 
##     sector + gender, data = data.c2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5906 -0.8408 -0.0371  0.5278  2.4727 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.92707    0.23516    3.94  8.6e-05 ***
## careertypeHT  0.17654    0.09736    1.81    0.070 .  
## age          -0.01339    0.00318   -4.21  2.8e-05 ***
## education     0.00980    0.00803    1.22    0.223    
## sector1      -0.13735    0.13284   -1.03    0.301    
## sector2       0.17887    0.23762    0.75    0.452    
## sector3      -0.05547    0.07983   -0.69    0.487    
## sector4      -0.10706    0.16386   -0.65    0.514    
## sector5      -0.04314    0.10915   -0.40    0.693    
## sector6       0.16348    0.09404    1.74    0.082 .  
## sector7       0.12819    0.23666    0.54    0.588    
## sector8      -0.18545    0.12365   -1.50    0.134    
## sector9       0.04331    0.14600    0.30    0.767    
## sector10     -0.11418    0.59182   -0.19    0.847    
## sector11      0.02159    0.09337    0.23    0.817    
## sector12     -0.09924    0.08943   -1.11    0.267    
## sector13     -0.02251    0.11030   -0.20    0.838    
## gender1      -0.00904    0.03262   -0.28    0.782    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.889 on 1086 degrees of freedom
##   (752 observations deleted due to missingness)
## Multiple R-squared: 0.0371,  Adjusted R-squared: 0.022 
## F-statistic: 2.46 on 17 and 1086 DF,  p-value: 0.000842
  1. Career achievements
## 
## Call:
## lm(formula = achievements ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.294 -0.331 -0.186  0.619  1.244 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  -0.36470    0.16163   -2.26   0.0242 * 
## careertypeHT -0.01126    0.06692   -0.17   0.8664   
## age           0.00523    0.00219    2.39   0.0168 * 
## education     0.00561    0.00552    1.02   0.3101   
## sector1       0.17285    0.09130    1.89   0.0586 . 
## sector2      -0.40070    0.16332   -2.45   0.0143 * 
## sector3      -0.04337    0.05487   -0.79   0.4294   
## sector4       0.17477    0.11262    1.55   0.1210   
## sector5       0.08715    0.07502    1.16   0.2456   
## sector6      -0.03271    0.06463   -0.51   0.6129   
## sector7      -0.13719    0.16265   -0.84   0.3992   
## sector8       0.11460    0.08499    1.35   0.1778   
## sector9       0.15481    0.10035    1.54   0.1232   
## sector10     -0.26517    0.40676   -0.65   0.5146   
## sector11     -0.01066    0.06417   -0.17   0.8681   
## sector12      0.19904    0.06163    3.23   0.0013 **
## sector13     -0.03385    0.07582   -0.45   0.6553   
## gender1       0.04010    0.02246    1.79   0.0744 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.611 on 1084 degrees of freedom
##   (754 observations deleted due to missingness)
## Multiple R-squared: 0.0397,  Adjusted R-squared: 0.0247 
## F-statistic: 2.64 on 17 and 1084 DF,  p-value: 0.000314
  1. Career sacrifices
## 
## Call:
## lm(formula = sacrifices ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.596 -0.364 -0.178  0.670  1.947 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   0.55348    0.21452    2.58    0.010 *
## careertypeHT  0.01470    0.08871    0.17    0.868  
## age          -0.00714    0.00290   -2.46    0.014 *
## education     0.01635    0.00735    2.22    0.026 *
## sector1      -0.12603    0.12103   -1.04    0.298  
## sector2      -0.14801    0.21648   -0.68    0.494  
## sector3      -0.02130    0.07274   -0.29    0.770  
## sector4      -0.01769    0.14929   -0.12    0.906  
## sector5      -0.00770    0.09944   -0.08    0.938  
## sector6       0.17933    0.08568    2.09    0.037 *
## sector7       0.44503    0.21561    2.06    0.039 *
## sector8      -0.11697    0.11265   -1.04    0.299  
## sector9       0.15059    0.13302    1.13    0.258  
## sector10     -0.22251    0.53919   -0.41    0.680  
## sector11     -0.04013    0.08507   -0.47    0.637  
## sector12      0.02455    0.08162    0.30    0.764  
## sector13      0.09455    0.10051    0.94    0.347  
## gender1       0.05313    0.02974    1.79    0.074 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.81 on 1084 degrees of freedom
##   (754 observations deleted due to missingness)
## Multiple R-squared: 0.033,   Adjusted R-squared: 0.0178 
## F-statistic: 2.18 on 17 and 1084 DF,  p-value: 0.00378
  1. Health suffered due to career
## 
## Call:
## lm(formula = healthsuffered ~ careertype + age + education + 
##     sector + gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.623 -0.844 -0.102  0.731  2.258 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.12818    0.23707    4.76  2.2e-06 ***
## careertypeHT  0.15685    0.09809    1.60    0.110    
## age          -0.01586    0.00321   -4.95  8.7e-07 ***
## education    -0.01393    0.00809   -1.72    0.085 .  
## sector1       0.03603    0.13384    0.27    0.788    
## sector2       0.35907    0.23939    1.50    0.134    
## sector3       0.03316    0.08051    0.41    0.681    
## sector4      -0.07846    0.16509   -0.48    0.635    
## sector5      -0.04499    0.10997   -0.41    0.683    
## sector6       0.13839    0.09474    1.46    0.144    
## sector7       0.20313    0.23843    0.85    0.394    
## sector8      -0.15020    0.12458   -1.21    0.228    
## sector9      -0.12439    0.14709   -0.85    0.398    
## sector10     -0.56765    0.59625   -0.95    0.341    
## sector11      0.06078    0.09407    0.65    0.518    
## sector12      0.09395    0.09010    1.04    0.297    
## sector13      0.10566    0.11113    0.95    0.342    
## gender1      -0.00274    0.03287   -0.08    0.934    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.896 on 1085 degrees of freedom
##   (753 observations deleted due to missingness)
## Multiple R-squared: 0.0358,  Adjusted R-squared: 0.0207 
## F-statistic: 2.37 on 17 and 1085 DF,  p-value: 0.00137

MARITAL INDICATORS

  1. Number of marriages
## 
## Call:
## lm(formula = marriages ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.2798 -0.0968 -0.0520  0.0085  2.0944 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.21046    0.07205    2.92   0.0035 **
## careertypeHT  0.11346    0.03507    3.23   0.0012 **
## age          -0.00333    0.00105   -3.18   0.0015 **
## education    -0.00268    0.00296   -0.91   0.3654   
## sector1      -0.12007    0.04934   -2.43   0.0151 * 
## sector2       0.12533    0.08554    1.47   0.1431   
## sector3       0.00546    0.02862    0.19   0.8487   
## sector4      -0.07494    0.06442   -1.16   0.2449   
## sector5      -0.02100    0.04033   -0.52   0.6026   
## sector6       0.00367    0.03273    0.11   0.9107   
## sector7       0.12103    0.08171    1.48   0.1387   
## sector8      -0.03956    0.04449   -0.89   0.3741   
## sector9      -0.09931    0.05012   -1.98   0.0477 * 
## sector10      0.07055    0.15683    0.45   0.6529   
## sector11      0.04313    0.03195    1.35   0.1772   
## sector12     -0.04883    0.03148   -1.55   0.1211   
## sector13      0.03020    0.03566    0.85   0.3972   
## gender1       0.01586    0.01205    1.32   0.1882   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.412 on 1648 degrees of freedom
##   (190 observations deleted due to missingness)
## Multiple R-squared: 0.0284,  Adjusted R-squared: 0.0184 
## F-statistic: 2.84 on 17 and 1648 DF,  p-value: 9.28e-05
  1. Number of children
## 
## Call:
## lm(formula = children ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.337 -0.731 -0.208  0.618  7.342 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.33320    0.22557   -5.91  4.3e-09 ***
## careertypeHT -0.16643    0.10845   -1.53  0.12508    
## age           0.01911    0.00329    5.81  7.6e-09 ***
## education     0.00279    0.00909    0.31  0.75927    
## sector1       0.44561    0.15453    2.88  0.00399 ** 
## sector2      -0.03570    0.26377   -0.14  0.89236    
## sector3      -0.00662    0.08687   -0.08  0.93929    
## sector4      -0.70909    0.20694   -3.43  0.00063 ***
## sector5      -0.00494    0.12520   -0.04  0.96851    
## sector6      -0.04827    0.10080   -0.48  0.63214    
## sector7       0.17961    0.23955    0.75  0.45351    
## sector8       0.01326    0.13648    0.10  0.92260    
## sector9      -0.22931    0.15659   -1.46  0.14330    
## sector10      0.50065    0.49199    1.02  0.30904    
## sector11     -0.17810    0.09816   -1.81  0.06982 .  
## sector12      0.04826    0.09641    0.50  0.61679    
## sector13      0.05873    0.10980    0.53  0.59279    
## gender1       0.08459    0.03721    2.27  0.02317 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 1.18 on 1440 degrees of freedom
##   (398 observations deleted due to missingness)
## Multiple R-squared: 0.0542,  Adjusted R-squared: 0.043 
## F-statistic: 4.85 on 17 and 1440 DF,  p-value: 2.93e-10
  1. Number of divorces
## 
## Call:
## lm(formula = divorces ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5331 -0.2294 -0.1497 -0.0451  2.6577 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.42705    0.07533    5.67  1.7e-08 ***
## careertypeHT  0.16638    0.03667    4.54  6.1e-06 ***
## age          -0.00688    0.00110   -6.28  4.3e-10 ***
## education    -0.00211    0.00310   -0.68    0.496    
## sector1      -0.10094    0.05158   -1.96    0.051 .  
## sector2       0.09002    0.08943    1.01    0.314    
## sector3      -0.00040    0.02992   -0.01    0.989    
## sector4      -0.04329    0.06735   -0.64    0.520    
## sector5       0.01321    0.04216    0.31    0.754    
## sector6       0.02569    0.03422    0.75    0.453    
## sector7       0.12517    0.08543    1.47    0.143    
## sector8      -0.06617    0.04651   -1.42    0.155    
## sector9      -0.07150    0.05240   -1.36    0.173    
## sector10     -0.21963    0.16397   -1.34    0.181    
## sector11      0.08603    0.03341    2.58    0.010 *  
## sector12      0.01539    0.03292    0.47    0.640    
## sector13      0.04062    0.03729    1.09    0.276    
## gender1      -0.00475    0.01260   -0.38    0.706    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.43 on 1648 degrees of freedom
##   (190 observations deleted due to missingness)
## Multiple R-squared: 0.0579,  Adjusted R-squared: 0.0481 
## F-statistic: 5.95 on 17 and 1648 DF,  p-value: 1.57e-13

FINANCIALS

  1. Wage Main Job
## 
## Call:
## lm(formula = WageMain ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -1996   -464    -85    326  11646 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2254.24     320.17    7.04  4.7e-12 ***
## careertypeHT   207.61     125.29    1.66   0.0980 .  
## age            -11.68       4.53   -2.58   0.0101 *  
## education       95.40      10.07    9.48  < 2e-16 ***
## sector1       -458.06     220.14   -2.08   0.0378 *  
## sector2        183.29     330.34    0.55   0.5792    
## sector3        185.57      99.93    1.86   0.0637 .  
## sector4        462.49     206.98    2.23   0.0258 *  
## sector5        -61.88     145.26   -0.43   0.6703    
## sector6       -250.17     120.51   -2.08   0.0383 *  
## sector7        -70.37     312.30   -0.23   0.8218    
## sector8        261.67     160.62    1.63   0.1038    
## sector9        501.57     178.41    2.81   0.0051 ** 
## sector10      -998.79     617.00   -1.62   0.1060    
## sector11       225.53     115.20    1.96   0.0507 .  
## sector12       -70.62     108.66   -0.65   0.5160    
## sector13        58.96     136.67    0.43   0.6663    
## gender1        246.68      44.03    5.60  3.1e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 920 on 670 degrees of freedom
##   (1168 observations deleted due to missingness)
## Multiple R-squared: 0.227,   Adjusted R-squared: 0.207 
## F-statistic: 11.6 on 17 and 670 DF,  p-value: <2e-16
  1. Last Salary

Currently in deciles, convert to EUR?

## 
## Call:
## lm(formula = lastsalary ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.923 -2.000 -0.076  2.062  5.646 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.8579     0.9404    4.10  4.5e-05 ***
## careertypeHT   1.2965     0.3286    3.95  8.7e-05 ***
## age           -0.0548     0.0128   -4.28  2.2e-05 ***
## education      0.0949     0.0280    3.39  0.00073 ***
## sector1       -1.2809     0.8349   -1.53  0.12538    
## sector2        0.8987     0.7942    1.13  0.25819    
## sector3       -0.2106     0.2775   -0.76  0.44815    
## sector4       -0.5536     0.5130   -1.08  0.28086    
## sector5       -0.2674     0.3910   -0.68  0.49422    
## sector6        0.1517     0.3482    0.44  0.66323    
## sector7        1.1228     0.8830    1.27  0.20392    
## sector8       -0.4366     0.4165   -1.05  0.29492    
## sector9        0.3547     0.4959    0.72  0.47466    
## sector10      -1.1176     1.7474   -0.64  0.52262    
## sector11       0.0152     0.3056    0.05  0.96033    
## sector12       0.5465     0.2946    1.86  0.06396 .  
## sector13       0.5555     0.3813    1.46  0.14557    
## gender1        0.5988     0.1184    5.06  5.4e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 2.61 on 744 degrees of freedom
##   (1094 observations deleted due to missingness)
## Multiple R-squared:  0.1,    Adjusted R-squared: 0.0797 
## F-statistic: 4.88 on 17 and 744 DF,  p-value: 4.89e-10
  1. Home ownership
## 
## Call:
## lm(formula = h_owner ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.515 -0.227 -0.157 -0.070  1.000 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.870981   0.068646   12.69  < 2e-16 ***
## careertypeHT  0.144285   0.033495    4.31  1.7e-05 ***
## age           0.004340   0.000999    4.35  1.5e-05 ***
## education    -0.012506   0.002821   -4.43  9.9e-06 ***
## sector1      -0.027420   0.046976   -0.58   0.5595    
## sector2      -0.102180   0.081446   -1.25   0.2098    
## sector3       0.018248   0.027251    0.67   0.5032    
## sector4       0.032576   0.061338    0.53   0.5954    
## sector5      -0.021444   0.038397   -0.56   0.5766    
## sector6       0.077078   0.031162    2.47   0.0135 *  
## sector7       0.014036   0.077800    0.18   0.8569    
## sector8       0.031350   0.042358    0.74   0.4593    
## sector9      -0.041421   0.047719   -0.87   0.3855    
## sector10     -0.184394   0.149329   -1.23   0.2171    
## sector11      0.079326   0.030472    2.60   0.0093 ** 
## sector12      0.027880   0.029979    0.93   0.3525    
## sector13      0.021896   0.034011    0.64   0.5198    
## gender1       0.004877   0.011475    0.43   0.6709    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.392 on 1646 degrees of freedom
##   (192 observations deleted due to missingness)
## Multiple R-squared: 0.0531,  Adjusted R-squared: 0.0433 
## F-statistic: 5.43 on 17 and 1646 DF,  p-value: 5.63e-12

CAREER ACTIVITY

  1. Retirement age
## 
## Call:
## lm(formula = AgePension ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -35.13  -2.38   0.11   2.68  20.56 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   49.6316     1.3847   35.84  < 2e-16 ***
## careertypeHT   2.2089     0.5290    4.18  3.2e-05 ***
## age            0.1306     0.0184    7.08  2.7e-12 ***
## education      0.1501     0.0446    3.36   0.0008 ***
## sector1        3.2508     0.7330    4.43  1.0e-05 ***
## sector2       -1.7452     1.3574   -1.29   0.1988    
## sector3       -1.1882     0.4440   -2.68   0.0076 ** 
## sector4       -1.0918     0.8970   -1.22   0.2238    
## sector5        0.0571     0.6165    0.09   0.9263    
## sector6        0.7387     0.5298    1.39   0.1636    
## sector7       -1.0100     1.4155   -0.71   0.4757    
## sector8       -0.7192     0.6929   -1.04   0.2996    
## sector9        0.9283     0.8429    1.10   0.2710    
## sector10      -0.6055     3.1272   -0.19   0.8465    
## sector11       0.1617     0.5061    0.32   0.7495    
## sector12      -1.4706     0.4820   -3.05   0.0023 ** 
## sector13       0.8527     0.6151    1.39   0.1660    
## gender1        0.7192     0.1814    3.96  7.9e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4.7 on 984 degrees of freedom
##   (854 observations deleted due to missingness)
## Multiple R-squared: 0.146,   Adjusted R-squared: 0.132 
## F-statistic: 9.94 on 17 and 984 DF,  p-value: <2e-16
  1. Career active years

This probably needs more control variables (e.g. financials)

## 
## Call:
## lm(formula = activecareer ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -38.52  -2.96   0.60   3.54  19.43 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -4.2286     0.9495   -4.45  9.0e-06 ***
## careertypeHT   0.6498     0.4622    1.41   0.1600    
## age            0.1499     0.0138   10.86  < 2e-16 ***
## education     -0.2312     0.0390   -5.93  3.8e-09 ***
## sector1        3.6699     0.6501    5.64  1.9e-08 ***
## sector2        0.5071     1.1272    0.45   0.6528    
## sector3       -0.6306     0.3771   -1.67   0.0947 .  
## sector4        0.4374     0.8489    0.52   0.6065    
## sector5        0.4226     0.5314    0.80   0.4266    
## sector6       -0.6665     0.4313   -1.55   0.1224    
## sector7       -1.0059     1.0767   -0.93   0.3503    
## sector8        0.9569     0.5862    1.63   0.1028    
## sector9       -0.0423     0.6604   -0.06   0.9490    
## sector10      -3.4147     2.0667   -1.65   0.0987 .  
## sector11       0.7348     0.4211    1.75   0.0812 .  
## sector12      -1.2614     0.4149   -3.04   0.0024 ** 
## sector13      -0.5985     0.4699   -1.27   0.2030    
## gender1        1.0297     0.1588    6.48  1.2e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 5.42 on 1648 degrees of freedom
##   (190 observations deleted due to missingness)
## Multiple R-squared: 0.197,   Adjusted R-squared: 0.189 
## F-statistic: 23.8 on 17 and 1648 DF,  p-value: <2e-16
  1. Career length
## 
## Call:
## lm(formula = LengthCareer ~ careertype + age + education + sector + 
##     gender, data = data.c2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.286  -2.632   0.261   3.164  14.313 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   36.3141     1.3861   26.20  < 2e-16 ***
## careertypeHT   2.2518     0.5295    4.25  2.3e-05 ***
## age            0.0667     0.0185    3.61  0.00032 ***
## education     -0.4758     0.0447  -10.65  < 2e-16 ***
## sector1        2.7307     0.7337    3.72  0.00021 ***
## sector2       -0.4993     1.3587   -0.37  0.71332    
## sector3       -0.1218     0.4445   -0.27  0.78406    
## sector4       -0.3103     0.8978   -0.35  0.72971    
## sector5        1.6842     0.6171    2.73  0.00646 ** 
## sector6        0.4090     0.5303    0.77  0.44076    
## sector7        0.1694     1.4169    0.12  0.90487    
## sector8        0.7173     0.6936    1.03  0.30132    
## sector9       -1.7492     0.8437   -2.07  0.03841 *  
## sector10       0.5841     3.1302    0.19  0.85202    
## sector11      -0.4910     0.5066   -0.97  0.33270    
## sector12      -2.4012     0.4825   -4.98  7.6e-07 ***
## sector13      -0.7622     0.6157   -1.24  0.21606    
## gender1        0.2433     0.1816    1.34  0.18055    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 4.7 on 984 degrees of freedom
##   (854 observations deleted due to missingness)
## Multiple R-squared: 0.274,   Adjusted R-squared: 0.262 
## F-statistic: 21.9 on 17 and 984 DF,  p-value: <2e-16