# reading the data

d = read.table("C:/Users/Sima/Desktop/Regression/Akbar.txt", header= TRUE, sep=",")


# looking in to data

str(d)
## 'data.frame':    100 obs. of  4 variables:
##  $ x0: int  1 2 3 4 5 6 7 8 9 10 ...
##  $ x1: num  72.7 80.6 83.9 79.4 69 ...
##  $ x2: num  3.42 8.6 1.11 5.32 5.54 ...
##  $ y : num  597.1 56.1 834.7 442.1 357.4 ...
# Part a: Scatter plot matrix

plot(~x0+x1+x2+y, data=d)


# Part b: Fit model 

yb.lm=lm(y~x1+x2, data=d)
summary(yb.lm)
## 
## Call:
## lm(formula = y ~ x1 + x2, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -99.642 -16.770   8.192  24.180  41.061 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  369.5516    44.7043   8.267 7.26e-13 ***
## x1             7.7613     0.5802  13.377  < 2e-16 ***
## x2          -104.2501     1.6912 -61.642  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 33.57 on 97 degrees of freedom
## Multiple R-squared:  0.9766, Adjusted R-squared:  0.9762 
## F-statistic:  2028 on 2 and 97 DF,  p-value: < 2.2e-16
anova(yb.lm)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## x1         1  287754  287754  255.27 < 2.2e-16 ***
## x2         1 4283247 4283247 3799.75 < 2.2e-16 ***
## Residuals 97  109343    1127                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Part c: Fit model 

d$x1s <- (d$x1)^2
d$x2s <- (d$x2)^2
d$x1x2 <- (d$x1)*(d$x2)
yc.lm=lm(y~x1+x1s+x2+x2s+x1x2, data=d)
summary(yc.lm)
## 
## Call:
## lm(formula = y ~ x1 + x1s + x2 + x2s + x1x2, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.100 -10.513   1.864  12.048  20.801 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 137.92799  278.35483   0.496    0.621    
## x1            7.39533    7.42368   0.996    0.322    
## x1s           0.02057    0.04942   0.416    0.678    
## x2            2.39802    9.02217   0.266    0.791    
## x2s          -6.02503    0.27850 -21.634  < 2e-16 ***
## x1x2         -0.57812    0.11058  -5.228 1.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.73 on 94 degrees of freedom
## Multiple R-squared:  0.9962, Adjusted R-squared:  0.996 
## F-statistic:  4950 on 5 and 94 DF,  p-value: < 2.2e-16
anova(yc.lm)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq   F value    Pr(>F)    
## x1         1  287754  287754  1527.353 < 2.2e-16 ***
## x1s        1   19323   19323   102.565 < 2.2e-16 ***
## x2         1 4265593 4265593 22641.079 < 2.2e-16 ***
## x2s        1   84814   84814   450.178 < 2.2e-16 ***
## x1x2       1    5150    5150    27.334 1.031e-06 ***
## Residuals 94   17710     188                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Part d: Standardize the predictors 

d$z1 = (d$x1-mean(d$x1))/sd(d$x1)
d$z2 = (d$x2-mean(d$x2))/sd(d$x2)

d$z1s <- (d$z1)^2
d$z2s <- (d$z2)^2
d$z1z2 <- (d$z1)*(d$z2)

yd.lm=lm(y~z1+z1s+z2+z2s+z1z2, data=d)
summary(yd.lm)
## 
## Call:
## lm(formula = y ~ z1 + z1s + z2 + z2s + z1z2, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.100 -10.513   1.864  12.048  20.801 
## 
## Coefficients:
##              Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  435.6928     2.2871  190.500  < 2e-16 ***
## z1            43.6158     1.3852   31.487  < 2e-16 ***
## z1s            0.6968     1.6743    0.416    0.678    
## z2          -205.3530     1.3926 -147.461  < 2e-16 ***
## z2s          -24.0275     1.1106  -21.634  < 2e-16 ***
## z1z2          -6.7202     1.2854   -5.228 1.03e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.73 on 94 degrees of freedom
## Multiple R-squared:  0.9962, Adjusted R-squared:  0.996 
## F-statistic:  4950 on 5 and 94 DF,  p-value: < 2.2e-16
# Part e

# Load DAAG library
library("DAAG")
## Warning: package 'DAAG' was built under R version 3.3.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.3.3

# Fit the model and look at the summary for it

ye.lm=lm(y~z1+z2+z2s+z1z2, data=d)
summary(ye.lm)
## 
## Call:
## lm(formula = y ~ z1 + z2 + z2s + z1z2, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -26.407 -10.792   1.792  12.048  21.187 
## 
## Coefficients:
##             Estimate Std. Error  t value Pr(>|t|)    
## (Intercept)  436.307      1.739  250.872  < 2e-16 ***
## z1            43.590      1.378   31.637  < 2e-16 ***
## z2          -205.338      1.386 -148.147  < 2e-16 ***
## z2s          -23.952      1.091  -21.954  < 2e-16 ***
## z1z2          -6.742      1.279   -5.272 8.43e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.67 on 95 degrees of freedom
## Multiple R-squared:  0.9962, Adjusted R-squared:  0.996 
## F-statistic:  6241 on 4 and 95 DF,  p-value: < 2.2e-16
# Look at anova table to get MSE

# 5-fold Cross Validation

cv5res=cv.lm(data=d, ye.lm, m=5)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value  Pr(>F)    
## z1         1  287754  287754  1540.8 < 2e-16 ***
## z2         1 4283247 4283247 22934.4 < 2e-16 ***
## z2s        1   86409   86409   462.7 < 2e-16 ***
## z1z2       1    5191    5191    27.8 8.4e-07 ***
## Residuals 95   17742     187                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = d, ye.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 20 
##                 1    12    14    20    29     32     38     40     52
## Predicted   579.1 601.0 414.2  91.1 324.9 254.21 373.22 192.38 433.03
## cvpred      578.5 599.3 414.7  91.1 325.6 253.84 372.11 192.94 431.86
## y           597.1 619.5 426.9  71.7 313.3 256.72 363.09 199.76 427.01
## CV residual  18.6  20.2  12.2 -19.4 -12.4   2.88  -9.01   6.82  -4.85
##                57     60      66     69    72    81    83    86     91  96
## Predicted   195.7 319.07 530.467 581.54 805.4 236.6 739.0 759.0 408.74 475
## cvpred      195.5 317.99 529.218 582.66 801.0 235.9 735.6 757.3 408.21 475
## y           212.7 327.93 529.994 581.19 811.4 256.4 758.1 751.1 401.70 460
## CV residual  17.2   9.94   0.777  -1.48  10.4  20.5  22.4  -6.2  -6.52 -16
##                 98
## Predicted   504.03
## cvpred      503.24
## y           509.64
## CV residual   6.39
## 
## Sum of squares = 3397    Mean square = 170    n = 20 
## 
## fold 2 
## Observations in test set: 20 
##               3     8     15    16    17    18    23     28    31    33
## Predicted   843 366.4 466.26 463.0 342.0  91.5 245.4 334.85 681.1 495.5
## cvpred      845 367.1 467.11 463.0 343.7  93.6 245.7 335.11 683.1 495.7
## y           835 343.5 461.94 481.6 316.8  72.3 260.8 338.47 661.8 475.0
## CV residual -10 -23.7  -5.17  18.6 -26.9 -21.3  15.1   3.37 -21.3 -20.7
##                39     42     45    48    58    59     62    63    90   100
## Predicted   539.3 -82.81 331.85 150.3 415.1 591.9 622.94 424.2  44.4  99.0
## cvpred      539.8 -79.35 332.62 153.3 415.8 592.3 623.26 424.2  46.2 105.1
## y           550.1 -77.58 329.41 133.2 400.0 603.5 628.19 442.6  28.0  76.4
## CV residual  10.3   1.77  -3.21 -20.2 -15.8  11.2   4.93  18.4 -18.2 -28.6
## 
## Sum of squares = 5745    Mean square = 287    n = 20 
## 
## fold 3 
## Observations in test set: 20 
##                 4      5     9    10    13    19    27   30  36      46
## Predicted   453.1 353.99 475.6 431.2 466.2 445.8 400.0 27.7 577 568.235
## cvpred      453.3 354.94 476.5 432.2 466.3 445.9 400.0 27.8 577 568.639
## y           442.1 357.37 493.0 445.9 453.9 458.3 421.1 45.5 592 568.814
## CV residual -11.2   2.43  16.5  13.7 -12.4  12.4  21.2 17.8  15   0.176
##                  47    49    55    61    70     78    82    92    93
## Predicted   -263.65 574.2  79.4 587.1  1.85 614.32 443.1 456.1 233.9
## cvpred      -264.66 576.1  79.5 587.4  1.48 614.46 444.2 456.8 234.7
## y           -260.17 556.8  59.9 565.9 -4.30 610.63 422.7 437.9 218.4
## CV residual    4.48 -19.3 -19.6 -21.5 -5.79  -3.83 -21.4 -18.9 -16.4
##                 94
## Predicted   563.73
## cvpred      564.00
## y           565.86
## CV residual   1.86
## 
## Sum of squares = 4265    Mean square = 213    n = 20 
## 
## fold 4 
## Observations in test set: 20 
##                  7      25     26    35    43     54     56    67    68
## Predicted   702.16 323.144 653.23 551.1 421.7 103.36 592.02 367.9 358.3
## cvpred      702.05 322.906 653.00 550.9 421.5 102.41 591.86 367.6 357.8
## y           700.39 323.131 657.76 561.5 436.9 106.08 595.68 381.7 377.0
## CV residual  -1.65   0.225   4.76  10.6  15.4   3.67   3.82  14.1  19.1
##                 73     74    76    77     84    85    87  88     89    97
## Predicted   588.69 311.64 651.1 496.5 -84.90 170.2 571.7 527 743.26 481.4
## cvpred      588.57 311.15 650.9 496.3 -85.86 169.4 571.5 527 743.12 481.3
## y           580.28 307.71 640.3 508.1 -76.63 163.8 558.7 545 748.34 458.5
## CV residual  -8.29  -3.44 -10.6  11.8   9.23  -5.6 -12.8  18   5.22 -22.8
##              99
## Predicted   399
## cvpred      399
## y           382
## CV residual -17
## 
## Sum of squares = 2740    Mean square = 137    n = 20 
## 
## fold 5 
## Observations in test set: 20 
##                2     6     11    21    22     24     34  37    41     44
## Predicted   42.8 428.3 221.24 619.0 600.8 656.69 301.16 532 222.5 383.22
## cvpred      37.2 428.6 220.62 621.4 603.2 656.00 300.16 529 219.2 381.97
## y           56.1 418.4 228.55 592.6 596.1 651.69 293.24 550 241.1 386.91
## CV residual 18.9 -10.2   7.93 -28.9  -7.1  -4.31  -6.92  21  21.9   4.94
##                 50    51    53    64    65     71     75     79    80
## Predicted   521.44 547.6 606.5 603.9 335.3 468.34 613.28 708.99 -36.2
## cvpred      522.36 547.5 605.7 603.0 334.4 466.35 609.21 701.99 -41.2
## y           519.61 536.6 621.3 615.8 348.0 470.91 617.29 710.44 -19.0
## CV residual  -2.75 -10.9  15.6  12.8  13.6   4.56   8.08   8.46  22.2
##                  95
## Predicted   210.344
## cvpred      209.240
## y           208.249
## CV residual  -0.991
## 
## Sum of squares = 3794    Mean square = 190    n = 20 
## 
## Overall (Sum over all 20 folds) 
##  ms 
## 199
# part f

# Fit the model and look at the summary for it

yf.lm=lm(y~x1+x2+x2s+x1x2, data=d)
summary(yf.lm)
## 
## Call:
## lm(formula = y ~ x1 + x2 + x2s + x1x2, data = d)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -26.41 -10.79   1.79  12.05  21.19 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   23.782     47.303    0.50     0.62    
## x1            10.474      0.620   16.89  < 2e-16 ***
## x2             2.350      8.982    0.26     0.79    
## x2s           -6.006      0.274  -21.95  < 2e-16 ***
## x1x2          -0.580      0.110   -5.27  8.4e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.7 on 95 degrees of freedom
## Multiple R-squared:  0.996,  Adjusted R-squared:  0.996 
## F-statistic: 6.24e+03 on 4 and 95 DF,  p-value: <2e-16
# Look at anova table to get MSE

# 5-fold Cross Validation

cv5res=cv.lm(data=d, yf.lm,m=5)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value  Pr(>F)    
## x1         1  287754  287754  1540.8 < 2e-16 ***
## x2         1 4283247 4283247 22934.4 < 2e-16 ***
## x2s        1   86409   86409   462.7 < 2e-16 ***
## x1x2       1    5191    5191    27.8 8.4e-07 ***
## Residuals 95   17742     187                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = d, yf.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 20 
##                 1    12    14    20    29     32     38     40     52
## Predicted   579.1 601.0 414.2  91.1 324.9 254.21 373.22 192.38 433.03
## cvpred      578.5 599.3 414.7  91.1 325.6 253.84 372.11 192.94 431.86
## y           597.1 619.5 426.9  71.7 313.3 256.72 363.09 199.76 427.01
## CV residual  18.6  20.2  12.2 -19.4 -12.4   2.88  -9.01   6.82  -4.85
##                57     60      66     69    72    81    83    86     91  96
## Predicted   195.7 319.07 530.467 581.54 805.4 236.6 739.0 759.0 408.74 475
## cvpred      195.5 317.99 529.218 582.66 801.0 235.9 735.6 757.3 408.21 475
## y           212.7 327.93 529.994 581.19 811.4 256.4 758.1 751.1 401.70 460
## CV residual  17.2   9.94   0.777  -1.48  10.4  20.5  22.4  -6.2  -6.52 -16
##                 98
## Predicted   504.03
## cvpred      503.24
## y           509.64
## CV residual   6.39
## 
## Sum of squares = 3397    Mean square = 170    n = 20 
## 
## fold 2 
## Observations in test set: 20 
##               3     8     15    16    17    18    23     28    31    33
## Predicted   843 366.4 466.26 463.0 342.0  91.5 245.4 334.85 681.1 495.5
## cvpred      845 367.1 467.11 463.0 343.7  93.6 245.7 335.11 683.1 495.7
## y           835 343.5 461.94 481.6 316.8  72.3 260.8 338.47 661.8 475.0
## CV residual -10 -23.7  -5.17  18.6 -26.9 -21.3  15.1   3.37 -21.3 -20.7
##                39     42     45    48    58    59     62    63    90   100
## Predicted   539.3 -82.81 331.85 150.3 415.1 591.9 622.94 424.2  44.4  99.0
## cvpred      539.8 -79.35 332.62 153.3 415.8 592.3 623.26 424.2  46.2 105.1
## y           550.1 -77.58 329.41 133.2 400.0 603.5 628.19 442.6  28.0  76.4
## CV residual  10.3   1.77  -3.21 -20.2 -15.8  11.2   4.93  18.4 -18.2 -28.6
## 
## Sum of squares = 5745    Mean square = 287    n = 20 
## 
## fold 3 
## Observations in test set: 20 
##                 4      5     9    10    13    19    27   30  36      46
## Predicted   453.1 353.99 475.6 431.2 466.2 445.8 400.0 27.7 577 568.235
## cvpred      453.3 354.94 476.5 432.2 466.3 445.9 400.0 27.8 577 568.639
## y           442.1 357.37 493.0 445.9 453.9 458.3 421.1 45.5 592 568.814
## CV residual -11.2   2.43  16.5  13.7 -12.4  12.4  21.2 17.8  15   0.176
##                  47    49    55    61    70     78    82    92    93
## Predicted   -263.65 574.2  79.4 587.1  1.85 614.32 443.1 456.1 233.9
## cvpred      -264.66 576.1  79.5 587.4  1.48 614.46 444.2 456.8 234.7
## y           -260.17 556.8  59.9 565.9 -4.30 610.63 422.7 437.9 218.4
## CV residual    4.48 -19.3 -19.6 -21.5 -5.79  -3.83 -21.4 -18.9 -16.4
##                 94
## Predicted   563.73
## cvpred      564.00
## y           565.86
## CV residual   1.86
## 
## Sum of squares = 4265    Mean square = 213    n = 20 
## 
## fold 4 
## Observations in test set: 20 
##                  7      25     26    35    43     54     56    67    68
## Predicted   702.16 323.144 653.23 551.1 421.7 103.36 592.02 367.9 358.3
## cvpred      702.05 322.906 653.00 550.9 421.5 102.41 591.86 367.6 357.8
## y           700.39 323.131 657.76 561.5 436.9 106.08 595.68 381.7 377.0
## CV residual  -1.65   0.225   4.76  10.6  15.4   3.67   3.82  14.1  19.1
##                 73     74    76    77     84    85    87  88     89    97
## Predicted   588.69 311.64 651.1 496.5 -84.90 170.2 571.7 527 743.26 481.4
## cvpred      588.57 311.15 650.9 496.3 -85.86 169.4 571.5 527 743.12 481.3
## y           580.28 307.71 640.3 508.1 -76.63 163.8 558.7 545 748.34 458.5
## CV residual  -8.29  -3.44 -10.6  11.8   9.23  -5.6 -12.8  18   5.22 -22.8
##              99
## Predicted   399
## cvpred      399
## y           382
## CV residual -17
## 
## Sum of squares = 2740    Mean square = 137    n = 20 
## 
## fold 5 
## Observations in test set: 20 
##                2     6     11    21    22     24     34  37    41     44
## Predicted   42.8 428.3 221.24 619.0 600.8 656.69 301.16 532 222.5 383.22
## cvpred      37.2 428.6 220.62 621.4 603.2 656.00 300.16 529 219.2 381.97
## y           56.1 418.4 228.55 592.6 596.1 651.69 293.24 550 241.1 386.91
## CV residual 18.9 -10.2   7.93 -28.9  -7.1  -4.31  -6.92  21  21.9   4.94
##                 50    51    53    64    65     71     75     79    80
## Predicted   521.44 547.6 606.5 603.9 335.3 468.34 613.28 708.99 -36.2
## cvpred      522.36 547.5 605.7 603.0 334.4 466.35 609.21 701.99 -41.2
## y           519.61 536.6 621.3 615.8 348.0 470.91 617.29 710.44 -19.0
## CV residual  -2.75 -10.9  15.6  12.8  13.6   4.56   8.08   8.46  22.2
##                  95
## Predicted   210.344
## cvpred      209.240
## y           208.249
## CV residual  -0.991
## 
## Sum of squares = 3794    Mean square = 190    n = 20 
## 
## Overall (Sum over all 20 folds) 
##  ms 
## 199
# Part g: Compare Models using F Tests 

anova(ye.lm,yf.lm)
## Analysis of Variance Table
## 
## Model 1: y ~ z1 + z2 + z2s + z1z2
## Model 2: y ~ x1 + x2 + x2s + x1x2
##   Res.Df   RSS Df Sum of Sq F Pr(>F)
## 1     95 17742                      
## 2     95 17742  0 -1.24e-10
# Question 2

# Load alr3 library

library("alr3")
## Warning: package 'alr3' was built under R version 3.3.3
## Loading required package: car
## Warning: package 'car' was built under R version 3.3.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:DAAG':
## 
##     vif
## 
## Attaching package: 'alr3'
## The following object is masked from 'package:DAAG':
## 
##     ais
# Read in and plot data

dat1=BGSall


# part a: Scatter plot matrix

plot(~WT9+HT9+ST9+LG9+Sex+Soma,data=dat1,pch=c(16,18)[as.factor(dat1$Sex)],col=c("red","blue")[as.factor(dat1$Sex)])

# part b: Fit model 


modelb.lm=lm(Soma~factor(Sex),data=dat1)
summary(modelb.lm)
## 
## Call:
## lm(formula = Soma ~ factor(Sex), data = dat1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.091 -0.779 -0.091  0.721  3.909 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.091      0.143   21.59  < 2e-16 ***
## factor(Sex)1    1.688      0.200    8.46  4.1e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.16 on 134 degrees of freedom
## Multiple R-squared:  0.348,  Adjusted R-squared:  0.343 
## F-statistic: 71.5 on 1 and 134 DF,  p-value: 4.12e-14
anova(modelb.lm)
## Analysis of Variance Table
## 
## Response: Soma
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## factor(Sex)   1   96.8    96.8    71.5 4.1e-14 ***
## Residuals   134  181.3     1.4                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 1 - Coincident Regressions

modelb1.lm=lm(Soma~WT9*factor(Sex)+HT9*factor(Sex)+ST9*factor(Sex)+LG9*factor(Sex),data=dat1)
summary(modelb1.lm)
## 
## Call:
## lm(formula = Soma ~ WT9 * factor(Sex) + HT9 * factor(Sex) + ST9 * 
##     factor(Sex) + LG9 * factor(Sex), data = dat1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.274 -0.581 -0.021  0.446  3.406 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       10.1652     4.8484    2.10   0.0380 *  
## WT9                0.1071     0.0651    1.64   0.1026    
## factor(Sex)1      -3.3342     6.7762   -0.49   0.6235    
## HT9               -0.0833     0.0315   -2.64   0.0092 ** 
## ST9               -0.0452     0.0109   -4.17  5.6e-05 ***
## LG9                0.1447     0.1537    0.94   0.3482    
## WT9:factor(Sex)1   0.0139     0.0867    0.16   0.8728    
## factor(Sex)1:HT9   0.0419     0.0474    0.88   0.3790    
## factor(Sex)1:ST9   0.0377     0.0147    2.57   0.0114 *  
## factor(Sex)1:LG9  -0.1383     0.1930   -0.72   0.4750    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.985 on 126 degrees of freedom
## Multiple R-squared:  0.56,   Adjusted R-squared:  0.528 
## F-statistic: 17.8 on 9 and 126 DF,  p-value: <2e-16
anova(modelb1.lm)
## Analysis of Variance Table
## 
## Response: Soma
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9               1   22.3    22.3   22.98 4.5e-06 ***
## factor(Sex)       1   96.8    96.8   99.71 < 2e-16 ***
## HT9               1   14.5    14.5   14.97 0.00017 ***
## ST9               1    9.9     9.9   10.16 0.00181 ** 
## LG9               1    0.2     0.2    0.16 0.68887    
## WT9:factor(Sex)   1    1.6     1.6    1.67 0.19892    
## factor(Sex):HT9   1    3.9     3.9    4.00 0.04773 *  
## factor(Sex):ST9   1    5.9     5.9    6.12 0.01470 *  
## factor(Sex):LG9   1    0.5     0.5    0.51 0.47498    
## Residuals       126  122.4     1.0                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 2 - Parallel

modelb2.lm=lm(Soma~WT9+HT9+ST9+LG9+factor(Sex),data=dat1)
summary(modelb2.lm)
## 
## Call:
## lm(formula = Soma ~ WT9 + HT9 + ST9 + LG9 + factor(Sex), data = dat1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.993 -0.661  0.040  0.493  3.574 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7.59474    3.41174    2.23   0.0277 *  
## WT9           0.11960    0.04353    2.75   0.0069 ** 
## HT9          -0.05686    0.02398   -2.37   0.0192 *  
## ST9          -0.02296    0.00738   -3.11   0.0023 ** 
## LG9           0.03714    0.09546    0.39   0.6978    
## factor(Sex)1  1.43848    0.18772    7.66  3.7e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.02 on 130 degrees of freedom
## Multiple R-squared:  0.517,  Adjusted R-squared:  0.498 
## F-statistic: 27.8 on 5 and 130 DF,  p-value: <2e-16
anova(modelb2.lm)
## Analysis of Variance Table
## 
## Response: Soma
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9           1   22.3    22.3   21.60 8.1e-06 ***
## HT9           1   22.4    22.4   21.73 7.7e-06 ***
## ST9           1   34.2    34.2   33.13 5.9e-08 ***
## LG9           1    4.0     4.0    3.92    0.05 *  
## factor(Sex)   1   60.7    60.7   58.72 3.7e-12 ***
## Residuals   130  134.3     1.0                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 3 - Common Intercept

modelb3.lm=lm(Soma~WT9+WT9:factor(Sex)+HT9+HT9:factor(Sex)+ST9+ST9:factor(Sex)+LG9+LG9:factor(Sex),data=dat1)
summary(modelb3.lm)
## 
## Call:
## lm(formula = Soma ~ WT9 + WT9:factor(Sex) + HT9 + HT9:factor(Sex) + 
##     ST9 + ST9:factor(Sex) + LG9 + LG9:factor(Sex), data = dat1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.302 -0.604 -0.023  0.439  3.459 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        8.4583     3.3770    2.50   0.0135 *  
## WT9                0.0903     0.0553    1.63   0.1048    
## HT9               -0.0736     0.0245   -3.00   0.0032 ** 
## ST9               -0.0463     0.0106   -4.36  2.7e-05 ***
## LG9                0.1808     0.1347    1.34   0.1819    
## WT9:factor(Sex)1   0.0449     0.0593    0.76   0.4501    
## factor(Sex)1:HT9   0.0210     0.0213    0.99   0.3256    
## factor(Sex)1:ST9   0.0401     0.0139    2.89   0.0045 ** 
## factor(Sex)1:LG9  -0.1977     0.1501   -1.32   0.1902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.983 on 127 degrees of freedom
## Multiple R-squared:  0.559,  Adjusted R-squared:  0.531 
## F-statistic: 20.1 on 8 and 127 DF,  p-value: <2e-16
anova(modelb3.lm)
## Analysis of Variance Table
## 
## Response: Soma
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9               1   22.3    22.3   23.12 4.2e-06 ***
## HT9               1   22.4    22.4   23.25 4.0e-06 ***
## ST9               1   34.2    34.2   35.46 2.4e-08 ***
## LG9               1    4.0     4.0    4.19  0.0427 *  
## WT9:factor(Sex)   1   62.2    62.2   64.43 5.8e-13 ***
## factor(Sex):HT9   1    0.4     0.4    0.43  0.5148    
## factor(Sex):ST9   1    8.1     8.1    8.38  0.0045 ** 
## factor(Sex):LG9   1    1.7     1.7    1.73  0.1902    
## Residuals       127  122.6     1.0                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 4 - No Restrcition

modelb4.lm=lm(Soma~WT9+HT9+ST9+LG9,data=dat1)
summary(modelb4.lm)
## 
## Call:
## lm(formula = Soma ~ WT9 + HT9 + ST9 + LG9, data = dat1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9427 -0.8608  0.0352  0.9020  2.9792 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.18495    4.07754    1.27     0.21    
## WT9          0.08005    0.05188    1.54     0.13    
## HT9         -0.04580    0.02874   -1.59     0.11    
## ST9         -0.04139    0.00837   -4.95  2.3e-06 ***
## LG9          0.18502    0.11221    1.65     0.10    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.22 on 131 degrees of freedom
## Multiple R-squared:  0.299,  Adjusted R-squared:  0.277 
## F-statistic: 13.9 on 4 and 131 DF,  p-value: 1.66e-09
anova(modelb4.lm)
## Analysis of Variance Table
## 
## Response: Soma
##            Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9         1   22.3    22.3   14.99 0.00017 ***
## HT9         1   22.4    22.4   15.08 0.00016 ***
## ST9         1   34.2    34.2   23.00 4.3e-06 ***
## LG9         1    4.0     4.0    2.72 0.10157    
## Residuals 131  195.0     1.5                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Compare Models using F Tests

anova(modelb2.lm,modelb1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ WT9 + HT9 + ST9 + LG9 + factor(Sex)
## Model 2: Soma ~ WT9 * factor(Sex) + HT9 * factor(Sex) + ST9 * factor(Sex) + 
##     LG9 * factor(Sex)
##   Res.Df RSS Df Sum of Sq    F Pr(>F)  
## 1    130 134                           
## 2    126 122  4      11.9 3.07  0.019 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modelb3.lm,modelb1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ WT9 + WT9:factor(Sex) + HT9 + HT9:factor(Sex) + ST9 + 
##     ST9:factor(Sex) + LG9 + LG9:factor(Sex)
## Model 2: Soma ~ WT9 * factor(Sex) + HT9 * factor(Sex) + ST9 * factor(Sex) + 
##     LG9 * factor(Sex)
##   Res.Df RSS Df Sum of Sq    F Pr(>F)
## 1    127 123                         
## 2    126 122  1     0.235 0.24   0.62
anova(modelb4.lm,modelb1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ WT9 + HT9 + ST9 + LG9
## Model 2: Soma ~ WT9 * factor(Sex) + HT9 * factor(Sex) + ST9 * factor(Sex) + 
##     LG9 * factor(Sex)
##   Res.Df RSS Df Sum of Sq    F  Pr(>F)    
## 1    131 195                              
## 2    126 122  5      72.6 14.9 1.6e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modelb.lm,modelb1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ factor(Sex)
## Model 2: Soma ~ WT9 * factor(Sex) + HT9 * factor(Sex) + ST9 * factor(Sex) + 
##     LG9 * factor(Sex)
##   Res.Df RSS Df Sum of Sq    F  Pr(>F)    
## 1    134 181                              
## 2    126 122  8      58.9 7.58 3.1e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Cross Validation

cv5res1=cv.lm(data=dat1,modelb1.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9               1   22.3    22.3   22.98 4.5e-06 ***
## factor(Sex)       1   96.8    96.8   99.71 < 2e-16 ***
## HT9               1   14.5    14.5   14.97 0.00017 ***
## ST9               1    9.9     9.9   10.16 0.00181 ** 
## LG9               1    0.2     0.2    0.16 0.68887    
## WT9:factor(Sex)   1    1.6     1.6    1.67 0.19892    
## factor(Sex):HT9   1    3.9     3.9    4.00 0.04773 *  
## factor(Sex):ST9   1    5.9     5.9    6.12 0.01470 *  
## factor(Sex):LG9   1    0.5     0.5    0.51 0.47498    
## Residuals       126  122.4     1.0                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modelb1.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                 10    12     17     25     34   39     43   48     51
## Predicted    3.528 2.455  3.035  2.152  3.927 3.42 3.0475 2.67  2.258
## cvpred       3.833 2.409  2.841  2.157  3.977 3.28 2.9777 2.51  2.205
## Soma         3.000 3.000  2.500  2.000  3.000 6.00 3.0000 4.00  2.000
## CV residual -0.833 0.591 -0.341 -0.157 -0.977 2.72 0.0223 1.49 -0.205
##                63     66     68      70     74   77    79    81    85
## Predicted    2.77  3.131  4.289  5.6568  4.294 4.68 5.335 4.325 5.141
## cvpred       2.93  3.101  4.278  5.5662  4.319 4.71 5.321 4.395 5.112
## Soma         1.00  3.000  4.000  5.5000  4.000 5.00 5.500 5.000 5.500
## CV residual -1.93 -0.101 -0.278 -0.0662 -0.319 0.29 0.179 0.605 0.388
##                 86   97    100   103    111   119   123   124    135
## Predicted    5.076 4.92  5.133 4.507  4.295 5.095  4.49 4.241  5.755
## cvpred       5.094 4.94  5.224 4.601  4.303 5.092  4.62 4.213  5.808
## Soma         4.500 6.00  5.000 5.000  4.000 5.500  3.00 4.500  5.500
## CV residual -0.594 1.06 -0.224 0.399 -0.303 0.408 -1.62 0.287 -0.308
## 
## Sum of squares = 21.1    Mean square = 0.78    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9   16   23    35    36     42    52     56    58
## Predicted   2.97 3.116 2.87 2.78  4.28 3.712  3.317  3.73  2.545  3.66
## cvpred      2.98 3.145 2.55 2.76  4.50 3.798  3.488  3.96  2.456  3.89
## Soma        6.00 4.000 4.00 4.00  3.50 4.000  3.000  2.00  1.500  2.00
## CV residual 3.02 0.855 1.45 1.24 -1.00 0.202 -0.488 -1.96 -0.956 -1.89
##                 65     67     72     80    88     91    95    98   101
## Predicted    3.323 4.8579  3.873  4.211 4.598  4.353 4.887  6.42 4.697
## cvpred       3.263 4.9747  3.905  4.122 4.698  4.419 4.911  6.79 4.727
## Soma         3.000 5.0000  3.000  4.000 5.000  4.000 5.000  4.50 5.000
## CV residual -0.263 0.0253 -0.905 -0.122 0.302 -0.419 0.089 -2.29 0.273
##               102    106   108    121   125   127   132   133    136
## Predicted   4.032  4.285 5.737  4.803 4.792 6.025  4.22 4.306  5.776
## cvpred      3.956  4.385 5.923  4.881 4.812 6.371  4.17 4.247  5.916
## Soma        4.000  4.000 6.500  4.000 5.000 6.500  4.00 4.500  5.500
## CV residual 0.044 -0.385 0.577 -0.881 0.188 0.129 -0.17 0.253 -0.416
## 
## Sum of squares = 31.2    Mean square = 1.12    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                 8     14    15    22    38    40    45    47   50    53
## Predicted   3.091  3.146  3.26  3.71  2.98  2.70 3.506  3.18 3.64  2.30
## cvpred      3.055  3.939  3.45  4.52  3.03  3.98 3.025  3.54 3.37  2.77
## Soma        4.000  3.000  2.50  3.00  2.00  1.50 3.500  2.00 4.00  1.00
## CV residual 0.945 -0.939 -0.95 -1.52 -1.03 -2.48 0.475 -1.54 0.63 -1.77
##                54    55    57    60    62   64    75       76   82     84
## Predicted   3.635  2.22  2.72  5.40 3.308 4.10 4.564  5.49299 5.35  4.132
## cvpred      3.722  3.28  2.66  8.79 3.566 4.52 4.584  5.50479 5.25  4.145
## Soma        4.000  1.50  1.50  4.00 4.000 6.00 5.000  5.50000 6.50  3.500
## CV residual 0.278 -1.78 -1.16 -4.79 0.434 1.48 0.416 -0.00479 1.25 -0.645
##                 90   96    99      117   120    122    129
## Predicted    4.310 4.47 4.478  4.97570 4.913  4.821  4.107
## cvpred       4.366 4.42 4.469  5.00855 4.861  4.842  4.084
## Soma         4.000 5.00 5.000  5.00000 5.500  4.000  3.500
## CV residual -0.366 0.58 0.531 -0.00855 0.639 -0.842 -0.584
## 
## Sum of squares = 52.6    Mean square = 1.95    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2     5     6    7   13    18   19    20     21    30    33
## Predicted   1.92  2.70 2.404 4.04 3.25  2.99 3.59 3.337  1.446  3.06 2.310
## cvpred      1.95  2.57 2.341 3.80 3.15  2.88 3.44 3.218  1.518  2.97 2.252
## Soma        4.00  1.50 3.000 6.00 4.00  2.00 7.00 4.000  1.000  1.50 3.000
## CV residual 2.05 -1.07 0.659 2.20 0.85 -0.88 3.56 0.782 -0.518 -1.47 0.748
##                37    49   73     92      94    104    105     107   110
## Predicted   1.773  2.48 4.49  5.280  4.4993  4.780  4.583  4.5101  4.59
## cvpred      1.779  2.49 4.49  5.256  4.5384  4.785  4.593  4.5217  4.59
## Soma        2.000  2.00 5.00  5.000  4.5000  4.000  4.500  4.5000  3.50
## CV residual 0.221 -0.49 0.51 -0.256 -0.0384 -0.785 -0.093 -0.0217 -1.09
##                114      115   116   118    126   128  134
## Predicted    4.680  3.97401 4.293 4.714  4.129 4.404 5.99
## cvpred       4.691  4.00407 4.237 4.653  4.119 4.418 5.98
## Soma         4.000  4.00000 5.000 5.000  4.000 5.000 7.00
## CV residual -0.691 -0.00407 0.763 0.347 -0.119 0.582 1.02
## 
## Sum of squares = 33.4    Mean square = 1.24    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                1     4    11      24    26   27     28     29    31
## Predicted   4.22  3.22 2.619  2.9237  2.82 2.52  2.594  3.565  3.77
## cvpred      4.28  3.14 2.619  3.0984  3.00 2.44  2.821  3.994  3.94
## Soma        7.00  2.00 3.000  3.0000  1.00 4.00  2.000  3.000  1.50
## CV residual 2.72 -1.14 0.381 -0.0984 -2.00 1.56 -0.821 -0.994 -2.44
##                  32      41   44     46    59    61     69    71    78
## Predicted    6.0947  2.2308 3.20  2.397 2.641 2.283  5.759 4.359 4.778
## cvpred       6.0686  2.0597 3.03  2.593 2.544 2.432  5.828 4.373 4.719
## Soma         6.0000  2.0000 3.50  2.000 3.000 3.000  5.500 4.500 5.000
## CV residual -0.0686 -0.0597 0.47 -0.593 0.456 0.568 -0.328 0.127 0.281
##                  83   87    89    93   109   112   113   130  131
## Predicted    4.5942 4.74 4.452  5.47 5.107 4.761  5.22 5.082 4.56
## cvpred       4.5403 4.62 4.376  5.61 5.031 4.789  5.11 5.032 4.51
## Soma         4.5000 6.00 4.500  4.50 5.500 5.000  4.50 5.500 5.00
## CV residual -0.0403 1.38 0.124 -1.11 0.469 0.211 -0.61 0.468 0.49
## 
## Sum of squares = 28.5    Mean square = 1.05    n = 27 
## 
## Overall (Sum over all 27 folds) 
##   ms 
## 1.23
cv5res1=cv.lm(data=dat1,modelb2.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9           1   22.3    22.3   21.60 8.1e-06 ***
## HT9           1   22.4    22.4   21.73 7.7e-06 ***
## ST9           1   34.2    34.2   33.13 5.9e-08 ***
## LG9           1    4.0     4.0    3.92    0.05 *  
## factor(Sex)   1   60.7    60.7   58.72 3.7e-12 ***
## Residuals   130  134.3     1.0                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modelb2.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                 10   12    17     25     34   39     43   48     51    63
## Predicted    3.526 2.49  3.17  2.400  3.159 3.29 2.9496 2.89  2.538  2.85
## cvpred       3.776 2.48  2.98  2.406  3.232 3.18 2.9042 2.71  2.506  3.01
## Soma         3.000 3.00  2.50  2.000  3.000 6.00 3.0000 4.00  2.000  1.00
## CV residual -0.776 0.52 -0.48 -0.406 -0.232 2.82 0.0958 1.29 -0.506 -2.01
##                  66     68    70     74    77    79    81     85     86
## Predicted    3.1312  4.201 5.449  4.584 4.664 5.152 4.643 5.3174  5.061
## cvpred       3.0835  4.214 5.315  4.638 4.789 5.213 4.852 5.4063  5.174
## Soma         3.0000  4.000 5.500  4.000 5.000 5.500 5.000 5.5000  4.500
## CV residual -0.0835 -0.214 0.185 -0.638 0.211 0.287 0.148 0.0937 -0.674
##               97    100    103    111   119   123   124    135
## Predicted   4.99  5.338  5.155  4.322 4.742  4.91 3.923  5.801
## cvpred      5.08  5.531  5.345  4.363 4.781  5.26 3.846  5.968
## Soma        6.00  5.000  5.000  4.000 5.500  3.00 4.500  5.500
## CV residual 0.92 -0.531 -0.345 -0.363 0.719 -2.26 0.654 -0.468
## 
## Sum of squares = 24    Mean square = 0.89    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9    16   23     35    36     42    52    56    58
## Predicted   2.95 3.039 3.402 2.87  3.743 3.348  3.006  3.25  2.66  3.21
## cvpred      2.89 3.041 3.191 2.82  3.828 3.343  3.092  3.37  2.57  3.31
## Soma        6.00 4.000 4.000 4.00  3.500 4.000  3.000  2.00  1.50  2.00
## CV residual 3.11 0.959 0.809 1.18 -0.328 0.657 -0.092 -1.37 -1.07 -1.31
##                 65    67     72     80     88     91     95    98    101
## Predicted    3.303 4.692  3.826  4.571  4.916  4.628  5.255  6.31  4.975
## cvpred       3.179 4.834  3.956  4.767  5.255  4.945  5.523  6.50  5.218
## Soma         3.000 5.000  3.000  4.000  5.000  4.000  5.000  4.50  5.000
## CV residual -0.179 0.166 -0.956 -0.767 -0.255 -0.945 -0.523 -2.00 -0.218
##               102   106   108   121    125    127     132    133    136
## Predicted   3.790  4.66 5.896  5.28  4.889  6.471  4.0782 4.3881  5.611
## cvpred      3.733  5.03 6.138  5.66  5.063  6.863  4.0972 4.4807  5.691
## Soma        4.000  4.00 6.500  4.00  5.000  6.500  4.0000 4.5000  5.500
## CV residual 0.267 -1.03 0.362 -1.66 -0.063 -0.363 -0.0972 0.0193 -0.191
## 
## Sum of squares = 28.9    Mean square = 1.03    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                 8     14     15     22    38    40    45    47    50    53
## Predicted   3.124  3.219  3.273  3.403  2.90  3.02 3.211  3.01 3.298  2.73
## cvpred      3.093  3.739  3.404  3.949  3.02  3.74 2.984  3.32 3.263  3.01
## Soma        4.000  3.000  2.500  3.000  2.00  1.50 3.500  2.00 4.000  1.00
## CV residual 0.907 -0.739 -0.904 -0.949 -1.02 -2.24 0.516 -1.32 0.737 -2.01
##                54    55    57    60    62   64    75    76   82     84
## Predicted   3.312  3.00  2.64  5.92 3.037 4.03 4.358 5.040 5.44  4.277
## cvpred      3.425  3.47  2.70  7.41 3.306 4.17 4.622 4.924 5.43  4.441
## Soma        4.000  1.50  1.50  4.00 4.000 6.00 5.000 5.500 6.50  3.500
## CV residual 0.575 -1.97 -1.20 -3.41 0.694 1.83 0.378 0.576 1.07 -0.941
##                90    96    99  117   120    122   129
## Predicted   3.943 4.624 4.629 4.97 5.056  4.620  4.22
## cvpred      3.737 4.349 4.468 4.83 4.975  4.601  3.79
## Soma        4.000 5.000 5.000 5.00 5.500  4.000  3.50
## CV residual 0.263 0.651 0.532 0.17 0.525 -0.601 -0.29
## 
## Sum of squares = 40.8    Mean square = 1.51    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2     5     6    7    13    18   19    20    21    30    33
## Predicted   2.39  2.65 2.650 3.35 3.110  3.03 3.43 3.214  2.26  2.96 2.512
## cvpred      2.43  2.55 2.578 3.21 3.071  2.92 3.30 3.136  2.28  2.93 2.472
## Soma        4.00  1.50 3.000 6.00 4.000  2.00 7.00 4.000  1.00  1.50 3.000
## CV residual 1.57 -1.05 0.422 2.79 0.929 -0.92 3.70 0.864 -1.28 -1.43 0.528
##                37     49    73    92       94    104     105     107
## Predicted    2.37  2.769 4.361  5.40  4.42541  4.782  4.6098  4.5343
## cvpred       2.32  2.806 4.352  5.33  4.50505  4.779  4.5991  4.5223
## Soma         2.00  2.000 5.000  5.00  4.50000  4.000  4.5000  4.5000
## CV residual -0.32 -0.806 0.648 -0.33 -0.00505 -0.779 -0.0991 -0.0223
##                110    114    115  116   118   126   128   134
## Predicted    4.481  4.842 3.9138 3.44 4.309 3.869 4.623 6.324
## cvpred       4.493  4.801 3.9375 3.47 4.238 3.852 4.562 6.286
## Soma         3.500  4.000 4.0000 5.00 5.000 4.000 5.000 7.000
## CV residual -0.993 -0.801 0.0625 1.53 0.762 0.148 0.438 0.714
## 
## Sum of squares = 38.8    Mean square = 1.44    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                1     4    11      24    26   27     28    29    31    32
## Predicted   4.11  3.30 2.655  2.9240  2.92 2.70  2.739  3.29  3.49 5.251
## cvpred      4.08  3.25 2.701  3.0295  3.03 2.64  2.898  3.55  3.55 5.108
## Soma        7.00  2.00 3.000  3.0000  1.00 4.00  2.000  3.00  1.50 6.000
## CV residual 2.92 -1.25 0.299 -0.0295 -2.03 1.36 -0.898 -0.55 -2.05 0.892
##                 41   44    46    59    61    69    71    78    83   87
## Predicted    2.593 3.11  2.75 2.646 2.546 5.096 3.994 4.646 4.477 4.58
## cvpred       2.524 3.02  2.90 2.616 2.682 4.791 3.962 4.455 4.291 4.43
## Soma         2.000 3.50  2.00 3.000 3.000 5.500 4.500 5.000 4.500 6.00
## CV residual -0.524 0.48 -0.90 0.384 0.318 0.709 0.538 0.545 0.209 1.57
##                89     93   109   112   113  130   131
## Predicted   4.392  5.264 4.991 4.563  5.28 5.05 4.587
## cvpred      4.308  5.252 4.812 4.587  5.10 4.83 4.547
## Soma        4.500  4.500 5.500 5.000  4.50 5.50 5.000
## CV residual 0.192 -0.752 0.688 0.413 -0.60 0.67 0.453
## 
## Sum of squares = 29.6    Mean square = 1.1    n = 27 
## 
## Overall (Sum over all 27 folds) 
##   ms 
## 1.19
cv5res1=cv.lm(data=dat1,modelb3.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9               1   22.3    22.3   23.12 4.2e-06 ***
## HT9               1   22.4    22.4   23.25 4.0e-06 ***
## ST9               1   34.2    34.2   35.46 2.4e-08 ***
## LG9               1    4.0     4.0    4.19  0.0427 *  
## WT9:factor(Sex)   1   62.2    62.2   64.43 5.8e-13 ***
## factor(Sex):HT9   1    0.4     0.4    0.43  0.5148    
## factor(Sex):ST9   1    8.1     8.1    8.38  0.0045 ** 
## factor(Sex):LG9   1    1.7     1.7    1.73  0.1902    
## Residuals       127  122.6     1.0                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modelb3.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                 10    12     17     25     34   39     43   48     51
## Predicted    3.578 2.468  3.004  2.162  3.824 3.42 3.0308 2.62  2.295
## cvpred       3.861 2.414  2.824  2.161  3.917 3.27 2.9672 2.48  2.225
## Soma         3.000 3.000  2.500  2.000  3.000 6.00 3.0000 4.00  2.000
## CV residual -0.861 0.586 -0.324 -0.161 -0.917 2.73 0.0328 1.52 -0.225
##                63      66     68     70     74    77    79    81    85
## Predicted    2.85  3.0913  4.267  5.694  4.313 4.632 5.291 4.267 5.066
## cvpred       2.97  3.0789  4.262  5.584  4.323 4.679 5.291 4.353 5.056
## Soma         1.00  3.0000  4.000  5.500  4.000 5.000 5.500 5.000 5.500
## CV residual -1.97 -0.0789 -0.262 -0.084 -0.323 0.321 0.209 0.647 0.444
##                 86   97    100   103    111   119   123  124    135
## Predicted    5.034 4.90  5.141 4.532  4.283 5.070  4.41 4.26  5.741
## cvpred       5.063 4.91  5.223 4.604  4.291 5.078  4.57 4.23  5.794
## Soma         4.500 6.00  5.000 5.000  4.000 5.500  3.00 4.50  5.500
## CV residual -0.563 1.09 -0.223 0.396 -0.291 0.422 -1.57 0.27 -0.294
## 
## Sum of squares = 21.3    Mean square = 0.79    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9   16   23     35    36     42    52     56    58
## Predicted   2.97 3.117 2.92 2.77  4.259 3.760  3.289  3.69  2.593  3.62
## cvpred      2.98 3.148 2.59 2.75  4.482 3.834  3.467  3.94  2.496  3.86
## Soma        6.00 4.000 4.00 4.00  3.500 4.000  3.000  2.00  1.500  2.00
## CV residual 3.02 0.852 1.41 1.25 -0.982 0.166 -0.467 -1.94 -0.996 -1.86
##                 65      67     72     80    88     91    95    98   101
## Predicted    3.371  4.8950  3.902  4.185 4.659  4.409 4.893  6.49 4.710
## cvpred       3.298  5.0197  3.924  4.109 4.777  4.488 4.943  6.89 4.759
## Soma         3.000  5.0000  3.000  4.000 5.000  4.000 5.000  4.50 5.000
## CV residual -0.298 -0.0197 -0.924 -0.109 0.223 -0.488 0.057 -2.39 0.241
##               102    106   108    121  125     127    132   133    136
## Predicted   3.986  4.361 5.770  4.850 4.79 6.11422  4.192 4.276  5.773
## cvpred      3.898  4.475 5.987  4.956 4.83 6.49459  4.138 4.223  5.936
## Soma        4.000  4.000 6.500  4.000 5.00 6.50000  4.000 4.500  5.500
## CV residual 0.102 -0.475 0.513 -0.956 0.17 0.00541 -0.138 0.277 -0.436
## 
## Sum of squares = 31.5    Mean square = 1.13    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                8     14    15    22    38    40   45    47    50    53
## Predicted   3.07  3.176  3.28  3.65  2.97  2.64 3.50  3.14 3.699  2.31
## cvpred      2.97  3.956  3.51  4.22  3.01  3.60 3.04  3.39 3.624  2.75
## Soma        4.00  3.000  2.50  3.00  2.00  1.50 3.50  2.00 4.000  1.00
## CV residual 1.03 -0.956 -1.01 -1.22 -1.01 -2.10 0.46 -1.39 0.376 -1.75
##                54    55    57    60    62   64    75    76   82     84
## Predicted   3.600  2.21  2.67  5.33 3.281 4.10 4.599 5.397 5.38  4.198
## cvpred      3.581  3.05  2.51  7.99 3.457 4.41 4.728 5.056 5.34  4.444
## Soma        4.000  1.50  1.50  4.00 4.000 6.00 5.000 5.500 6.50  3.500
## CV residual 0.419 -1.55 -1.01 -3.99 0.543 1.59 0.272 0.444 1.16 -0.944
##                  90    96    99   117   120    122   129
## Predicted    4.2443 4.476 4.479 4.915 4.928  4.790  4.09
## cvpred       4.0706 4.426 4.475 4.765 4.912  4.698  3.99
## Soma         4.0000 5.000 5.000 5.000 5.500  4.000  3.50
## CV residual -0.0706 0.574 0.525 0.235 0.588 -0.698 -0.49
## 
## Sum of squares = 41.9    Mean square = 1.55    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2     5     6    7    13     18   19    20     21    30
## Predicted   1.95  2.64 2.397 4.05 3.287  2.971 3.54 3.357  1.456  3.08
## cvpred      1.99  2.52 2.337 3.80 3.179  2.863 3.39 3.234  1.534  2.99
## Soma        4.00  1.50 3.000 6.00 4.000  2.000 7.00 4.000  1.000  1.50
## CV residual 2.01 -1.02 0.663 2.20 0.821 -0.863 3.61 0.766 -0.534 -1.49
##                33    37     49    73     92      94    104    105     107
## Predicted   2.286 1.774  2.568 4.484  5.276  4.4749  4.757  4.595  4.5159
## cvpred      2.238 1.782  2.564 4.484  5.248  4.5251  4.768  4.603  4.5273
## Soma        3.000 2.000  2.000 5.000  5.000  4.5000  4.000  4.500  4.5000
## CV residual 0.762 0.218 -0.564 0.516 -0.248 -0.0251 -0.768 -0.103 -0.0273
##               110    114    115   116   118    126   128  134
## Predicted    4.56  4.671  4.039 4.268 4.655  4.158 4.461 5.96
## cvpred       4.58  4.684  4.058 4.217 4.603  4.141 4.462 5.95
## Soma         3.50  4.000  4.000 5.000 5.000  4.000 5.000 7.00
## CV residual -1.08 -0.684 -0.058 0.783 0.397 -0.141 0.538 1.05
## 
## Sum of squares = 33.6    Mean square = 1.24    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                1     4    11    24    26   27     28     29    31      32
## Predicted   4.23  3.19 2.607  2.97  2.87 2.49  2.657  3.671  3.80  6.0495
## cvpred      4.27  3.16 2.624  3.07  2.97 2.46  2.775  3.914  3.92  6.0981
## Soma        7.00  2.00 3.000  3.00  1.00 4.00  2.000  3.000  1.50  6.0000
## CV residual 2.73 -1.16 0.376 -0.07 -1.97 1.54 -0.775 -0.914 -2.42 -0.0981
##                  41    44     46    59    61     69    71    78      83
## Predicted    2.1834 3.134  2.460 2.599 2.326  5.832 4.357 4.815  4.6400
## cvpred       2.0917 3.074  2.543 2.575 2.397  5.777 4.369 4.695  4.5126
## Soma         2.0000 3.500  2.000 3.000 3.000  5.500 4.500 5.000  4.5000
## CV residual -0.0917 0.426 -0.543 0.425 0.603 -0.277 0.131 0.305 -0.0126
##               87    89    93  109   112    113   130   131
## Predicted   4.73 4.450  5.47 5.12 4.730  5.218 5.129 4.549
## cvpred      4.62 4.375  5.60 5.02 4.802  5.105 5.003 4.516
## Soma        6.00 4.500  4.50 5.50 5.000  4.500 5.500 5.000
## CV residual 1.38 0.125 -1.10 0.48 0.198 -0.605 0.497 0.484
## 
## Sum of squares = 27.9    Mean square = 1.04    n = 27 
## 
## Overall (Sum over all 27 folds) 
##   ms 
## 1.15
cv5res1=cv.lm(data=dat1,modelb4.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##            Df Sum Sq Mean Sq F value  Pr(>F)    
## WT9         1   22.3    22.3   14.99 0.00017 ***
## HT9         1   22.4    22.4   15.08 0.00016 ***
## ST9         1   34.2    34.2   23.00 4.3e-06 ***
## LG9         1    4.0     4.0    2.72 0.10157    
## Residuals 131  195.0     1.5                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modelb4.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                10     12     17     25    34   39     43    48    51    63
## Predicted    4.39  3.094  3.622  2.881  3.98 3.98  3.580 3.222  3.07  3.65
## cvpred       4.55  3.105  3.472  2.917  4.12 3.87  3.555 3.119  3.04  3.74
## Soma         3.00  3.000  2.500  2.000  3.00 6.00  3.000 4.000  2.00  1.00
## CV residual -1.55 -0.105 -0.972 -0.917 -1.12 2.13 -0.555 0.881 -1.04 -2.74
##                 66    68    70     74    77    79    81    85     86   97
## Predicted    3.669 3.524 4.762  4.091 4.186 4.673 4.451 5.336  4.664 4.58
## cvpred       3.654 3.537 4.599  4.156 4.252 4.639 4.578 5.256  4.689 4.61
## Soma         3.000 4.000 5.500  4.000 5.000 5.500 5.000 5.500  4.500 6.00
## CV residual -0.654 0.463 0.901 -0.156 0.748 0.861 0.422 0.244 -0.189 1.39
##                 100    103   111  119   123  124    135
## Predicted    4.8784  4.968 3.704 3.94  4.87 2.82 5.4297
## cvpred       5.0301  5.129 3.745 3.95  5.10 2.83 5.4943
## Soma         5.0000  5.000 4.000 5.50  3.00 4.50 5.5000
## CV residual -0.0301 -0.129 0.255 1.55 -2.10 1.67 0.0057
## 
## Sum of squares = 34.3    Mean square = 1.27    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9    16    23    35     36     42    52    56    58
## Predicted   3.62 3.704 3.887 3.426  4.71  4.328  3.731  4.09  3.29  4.03
## cvpred      3.62 3.731 3.777 3.426  4.83  4.366  3.818  4.20  3.25  4.14
## Soma        6.00 4.000 4.000 4.000  3.50  4.000  3.000  2.00  1.50  2.00
## CV residual 2.38 0.269 0.223 0.574 -1.33 -0.366 -0.818 -2.20 -1.75 -2.14
##                65   67    72    80    88     91    95    98   101  102
## Predicted    4.12 3.87 2.875  4.31 4.415  4.061  5.05  5.65 4.609 2.94
## cvpred       4.09 3.90 2.913  4.41 4.585  4.213  5.19  5.74 4.732 2.87
## Soma         3.00 5.00 3.000  4.00 5.000  4.000  5.00  4.50 5.000 4.00
## CV residual -1.09 1.10 0.087 -0.41 0.415 -0.213 -0.19 -1.24 0.268 1.13
##               106   108   121   125   127   132   133   136
## Predicted    4.08 5.544  5.04 4.435 6.160 3.338 3.877 5.100
## cvpred       4.27 5.668  5.24 4.507 6.395 3.314 3.909 5.115
## Soma         4.00 6.500  4.00 5.000 6.500 4.000 4.500 5.500
## CV residual -0.27 0.832 -1.24 0.493 0.105 0.686 0.591 0.385
## 
## Sum of squares = 30.4    Mean square = 1.09    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                 8    14    15    22    38    40     45    47    50    53
## Predicted   3.744  3.85  4.00  4.02  3.55  3.25  4.058  3.62  4.31  3.13
## cvpred      3.647  4.50  4.11  4.75  3.66  4.21  3.697  4.00  4.19  3.44
## Soma        4.000  3.00  2.50  3.00  2.00  1.50  3.500  2.00  4.00  1.00
## CV residual 0.353 -1.50 -1.61 -1.75 -1.66 -2.71 -0.197 -2.00 -0.19 -2.44
##                 54    55    57    60      62   64   75   76   82     84
## Predicted    4.060  3.15  3.16  6.24  3.7224 4.82 3.46 4.46 4.87  3.526
## cvpred       4.182  3.73  3.22  8.22  4.0567 4.95 3.89 4.30 4.93  3.852
## Soma         4.000  1.50  1.50  4.00  4.0000 6.00 5.00 5.50 6.50  3.500
## CV residual -0.182 -2.23 -1.72 -4.22 -0.0567 1.05 1.11 1.20 1.57 -0.352
##               90  96   99   117   120   122   129
## Predicted   3.09 4.0 4.10 4.662 4.540 3.961 3.533
## cvpred      2.84 3.7 3.95 4.505 4.505 3.978 3.022
## Soma        4.00 5.0 5.00 5.000 5.500 4.000 3.500
## CV residual 1.16 1.3 1.05 0.495 0.995 0.022 0.478
## 
## Sum of squares = 65.8    Mean square = 2.44    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2     5      6    7     13    18   19     20    21    30
## Predicted   2.85  3.11 3.0951 4.42 3.9499  3.57 4.02 3.9901  2.43  3.74
## cvpred      2.86  2.97 2.9685 4.34 3.9465  3.43 3.87 3.9281  2.35  3.73
## Soma        4.00  1.50 3.0000 6.00 4.0000  2.00 7.00 4.0000  1.00  1.50
## CV residual 1.14 -1.47 0.0315 1.66 0.0535 -1.43 3.13 0.0719 -1.35 -2.23
##                33     37    49   73      92    94    104   105   107
## Predicted   2.944  2.614  3.51 3.62  5.0705 3.699  4.259 3.941 3.874
## cvpred      2.858  2.475  3.57 3.54  5.0107 3.745  4.236 3.883 3.813
## Soma        3.000  2.000  2.00 5.00  5.0000 4.500  4.000 4.500 4.500
## CV residual 0.142 -0.475 -1.57 1.46 -0.0107 0.755 -0.236 0.617 0.687
##                110    114  115  116  118  126  128   134
## Predicted    3.824  4.419 2.81 2.07 3.64 2.81 3.96 6.362
## cvpred       3.788  4.366 2.71 1.90 3.47 2.66 3.84 6.437
## Soma         3.500  4.000 4.00 5.00 5.00 4.00 5.00 7.000
## CV residual -0.288 -0.366 1.29 3.10 1.53 1.34 1.16 0.563
## 
## Sum of squares = 48.5    Mean square = 1.79    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                1     4     11     24    26    27    28    29    31     32
## Predicted   4.91  3.83  3.196  3.693  3.64 3.186  3.44  4.39  4.44  6.426
## cvpred      4.79  3.67  3.171  3.769  3.72 3.058  3.58  4.66  4.46  6.163
## Soma        7.00  2.00  3.000  3.000  1.00 4.000  2.00  3.00  1.50  6.000
## CV residual 2.21 -1.67 -0.171 -0.769 -2.72 0.942 -1.58 -1.66 -2.96 -0.163
##                 41     44    46      59     61   69   71   78   83   87
## Predicted    2.854 3.6154  3.31  3.1579  3.092 3.86 3.04 3.77 3.56 3.77
## cvpred       2.677 3.4117  3.42  3.0439  3.189 3.54 3.08 3.61 3.40 3.67
## Soma         2.000 3.5000  2.00  3.0000  3.000 5.50 4.50 5.00 4.50 6.00
## CV residual -0.677 0.0883 -1.42 -0.0439 -0.189 1.96 1.42 1.39 1.10 2.33
##               89     93  109   112    113  130   131
## Predicted   3.65  4.707 4.25 3.931  4.722 4.28 4.001
## cvpred      3.64  4.771 4.12 4.054  4.601 4.09 4.046
## Soma        4.50  4.500 5.50 5.000  4.500 5.50 5.000
## CV residual 0.86 -0.271 1.38 0.946 -0.101 1.41 0.954
## 
## Sum of squares = 54.1    Mean square = 2    n = 27 
## 
## Overall (Sum over all 27 folds) 
##   ms 
## 1.71
# part c: Scatter plot matrix

plot(~WT18+HT18++ST18+LG18+Sex+Soma,data=dat1,pch=c(16,18)[as.factor(dat1$Sex)],col=c("red","blue")[as.factor(dat1$Sex)])

# part d: Fit model 

modeld.lm=lm(Soma~factor(Sex),data=dat1)
summary(modeld.lm)
## 
## Call:
## lm(formula = Soma ~ factor(Sex), data = dat1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.091 -0.779 -0.091  0.721  3.909 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.091      0.143   21.59  < 2e-16 ***
## factor(Sex)1    1.688      0.200    8.46  4.1e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.16 on 134 degrees of freedom
## Multiple R-squared:  0.348,  Adjusted R-squared:  0.343 
## F-statistic: 71.5 on 1 and 134 DF,  p-value: 4.12e-14
anova(modeld.lm)
## Analysis of Variance Table
## 
## Response: Soma
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## factor(Sex)   1   96.8    96.8    71.5 4.1e-14 ***
## Residuals   134  181.3     1.4                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 1 - Coincident Regressions

modeld1.lm=lm(Soma~WT18*factor(Sex)+HT18*factor(Sex)+ST18*factor(Sex)+LG18*factor(Sex),data=dat1)
summary(modeld1.lm)
## 
## Call:
## lm(formula = Soma ~ WT18 * factor(Sex) + HT18 * factor(Sex) + 
##     ST18 * factor(Sex) + LG18 * factor(Sex), data = dat1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0026 -0.3936  0.0281  0.3707  2.6393 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       12.66246    3.66374    3.46  0.00075 ***
## WT18               0.11802    0.02232    5.29  5.3e-07 ***
## factor(Sex)1      -2.28727    4.79345   -0.48  0.63407    
## HT18              -0.07871    0.01674   -4.70  6.7e-06 ***
## ST18              -0.02145    0.00361   -5.93  2.7e-08 ***
## LG18               0.02128    0.08296    0.26  0.79802    
## WT18:factor(Sex)1 -0.02338    0.02930   -0.80  0.42640    
## factor(Sex)1:HT18  0.01825    0.02461    0.74  0.45964    
## factor(Sex)1:ST18  0.01926    0.00663    2.91  0.00431 ** 
## factor(Sex)1:LG18 -0.04706    0.10194   -0.46  0.64518    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.757 on 126 degrees of freedom
## Multiple R-squared:  0.74,   Adjusted R-squared:  0.722 
## F-statistic: 39.9 on 9 and 126 DF,  p-value: <2e-16
anova(modeld1.lm)
## Analysis of Variance Table
## 
## Response: Soma
##                   Df Sum Sq Mean Sq F value  Pr(>F)    
## WT18               1    3.9     3.9    6.83  0.0100 *  
## factor(Sex)        1  154.3   154.3  269.13 < 2e-16 ***
## HT18               1   26.0    26.0   45.29 5.4e-10 ***
## ST18               1   14.8    14.8   25.74 1.4e-06 ***
## LG18               1    0.0     0.0    0.05  0.8208    
## WT18:factor(Sex)   1    0.8     0.8    1.43  0.2335    
## factor(Sex):HT18   1    1.1     1.1    1.93  0.1669    
## factor(Sex):ST18   1    4.7     4.7    8.24  0.0048 ** 
## factor(Sex):LG18   1    0.1     0.1    0.21  0.6452    
## Residuals        126   72.2     0.6                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 2 - Parallel

modeld2.lm=lm(Soma~WT18+HT18+ST18+LG18+factor(Sex),data=dat1)
summary(modeld2.lm)
## 
## Call:
## lm(formula = Soma ~ WT18 + HT18 + ST18 + LG18 + factor(Sex), 
##     data = dat1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1315 -0.4323  0.0571  0.3598  2.6656 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  11.03816    2.41175    4.58  1.1e-05 ***
## WT18          0.10318    0.01424    7.25  3.4e-11 ***
## HT18         -0.06924    0.01242   -5.57  1.4e-07 ***
## ST18         -0.01506    0.00306   -4.92  2.6e-06 ***
## LG18          0.01074    0.04874    0.22    0.826    
## factor(Sex)1  0.60194    0.30308    1.99    0.049 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.78 on 130 degrees of freedom
## Multiple R-squared:  0.716,  Adjusted R-squared:  0.705 
## F-statistic: 65.5 on 5 and 130 DF,  p-value: <2e-16
anova(modeld2.lm)
## Analysis of Variance Table
## 
## Response: Soma
##              Df Sum Sq Mean Sq F value Pr(>F)    
## WT18          1    3.9     3.9    6.44  0.012 *  
## HT18          1  130.0   130.0  213.85 <2e-16 ***
## ST18          1   62.4    62.4  102.57 <2e-16 ***
## LG18          1    0.3     0.3    0.54  0.465    
## factor(Sex)   1    2.4     2.4    3.94  0.049 *  
## Residuals   130   79.0     0.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 3 - Common Intercept

modeld3.lm=lm(Soma~WT18+WT18:factor(Sex)+HT18+HT18:factor(Sex)+ST18+ST18:factor(Sex)+LG18+LG18:factor(Sex),data=dat1)
summary(modeld3.lm)
## 
## Call:
## lm(formula = Soma ~ WT18 + WT18:factor(Sex) + HT18 + HT18:factor(Sex) + 
##     ST18 + ST18:factor(Sex) + LG18 + LG18:factor(Sex), data = dat1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0147 -0.3893  0.0159  0.3832  2.6350 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       11.32627    2.35531    4.81  4.2e-06 ***
## WT18               0.11257    0.01912    5.89  3.3e-08 ***
## HT18              -0.07343    0.01253   -5.86  3.8e-08 ***
## ST18              -0.02142    0.00360   -5.95  2.5e-08 ***
## LG18               0.04244    0.06990    0.61   0.5449    
## WT18:factor(Sex)1 -0.01464    0.02281   -0.64   0.5220    
## factor(Sex)1:HT18  0.00803    0.01206    0.67   0.5070    
## factor(Sex)1:ST18  0.01945    0.00659    2.95   0.0038 ** 
## factor(Sex)1:LG18 -0.07807    0.07829   -1.00   0.3205    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.755 on 127 degrees of freedom
## Multiple R-squared:  0.74,   Adjusted R-squared:  0.723 
## F-statistic: 45.1 on 8 and 127 DF,  p-value: <2e-16
anova(modeld3.lm)
## Analysis of Variance Table
## 
## Response: Soma
##                   Df Sum Sq Mean Sq F value Pr(>F)    
## WT18               1    3.9     3.9    6.87 0.0098 ** 
## HT18               1  130.0   130.0  228.10 <2e-16 ***
## ST18               1   62.4    62.4  109.41 <2e-16 ***
## LG18               1    0.3     0.3    0.57 0.4508    
## WT18:factor(Sex)   1    1.4     1.4    2.47 0.1185    
## factor(Sex):HT18   1    2.5     2.5    4.32 0.0396 *  
## factor(Sex):ST18   1    4.6     4.6    8.08 0.0052 ** 
## factor(Sex):LG18   1    0.6     0.6    0.99 0.3205    
## Residuals        127   72.4     0.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Model 4 - No Restrcition

modeld4.lm=lm(Soma~WT18+HT18+ST18+LG18,data=dat1)
summary(modeld4.lm)
## 
## Call:
## lm(formula = Soma ~ WT18 + HT18 + ST18 + LG18, data = dat1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0080 -0.4366  0.0458  0.3629  2.6544 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  12.3447     2.3462    5.26  5.7e-07 ***
## WT18          0.0994     0.0143    6.97  1.4e-10 ***
## HT18         -0.0740     0.0123   -6.01  1.7e-08 ***
## ST18         -0.0197     0.0020   -9.87  < 2e-16 ***
## LG18          0.0346     0.0478    0.72     0.47    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.788 on 131 degrees of freedom
## Multiple R-squared:  0.707,  Adjusted R-squared:  0.698 
## F-statistic: 79.1 on 4 and 131 DF,  p-value: <2e-16
anova(modeld4.lm)
## Analysis of Variance Table
## 
## Response: Soma
##            Df Sum Sq Mean Sq F value Pr(>F)    
## WT18        1    3.9     3.9    6.30  0.013 *  
## HT18        1  130.0   130.0  209.15 <2e-16 ***
## ST18        1   62.4    62.4  100.32 <2e-16 ***
## LG18        1    0.3     0.3    0.52  0.470    
## Residuals 131   81.4     0.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Compare Models using F Tests

anova(modeld2.lm,modeld1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ WT18 + HT18 + ST18 + LG18 + factor(Sex)
## Model 2: Soma ~ WT18 * factor(Sex) + HT18 * factor(Sex) + ST18 * factor(Sex) + 
##     LG18 * factor(Sex)
##   Res.Df  RSS Df Sum of Sq    F Pr(>F)  
## 1    130 79.0                           
## 2    126 72.2  4      6.78 2.96  0.023 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modeld3.lm,modeld1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ WT18 + WT18:factor(Sex) + HT18 + HT18:factor(Sex) + ST18 + 
##     ST18:factor(Sex) + LG18 + LG18:factor(Sex)
## Model 2: Soma ~ WT18 * factor(Sex) + HT18 * factor(Sex) + ST18 * factor(Sex) + 
##     LG18 * factor(Sex)
##   Res.Df  RSS Df Sum of Sq    F Pr(>F)
## 1    127 72.4                         
## 2    126 72.2  1     0.131 0.23   0.63
anova(modeld4.lm,modeld1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ WT18 + HT18 + ST18 + LG18
## Model 2: Soma ~ WT18 * factor(Sex) + HT18 * factor(Sex) + ST18 * factor(Sex) + 
##     LG18 * factor(Sex)
##   Res.Df  RSS Df Sum of Sq   F Pr(>F)   
## 1    131 81.4                           
## 2    126 72.2  5      9.18 3.2 0.0094 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modeld.lm,modeld1.lm)
## Analysis of Variance Table
## 
## Model 1: Soma ~ factor(Sex)
## Model 2: Soma ~ WT18 * factor(Sex) + HT18 * factor(Sex) + ST18 * factor(Sex) + 
##     LG18 * factor(Sex)
##   Res.Df   RSS Df Sum of Sq    F Pr(>F)    
## 1    134 181.3                             
## 2    126  72.2  8       109 23.8 <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Cross Validation



cv5res1=cv.lm(data=dat1,modeld1.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##                   Df Sum Sq Mean Sq F value  Pr(>F)    
## WT18               1    3.9     3.9    6.83  0.0100 *  
## factor(Sex)        1  154.3   154.3  269.13 < 2e-16 ***
## HT18               1   26.0    26.0   45.29 5.4e-10 ***
## ST18               1   14.8    14.8   25.74 1.4e-06 ***
## LG18               1    0.0     0.0    0.05  0.8208    
## WT18:factor(Sex)   1    0.8     0.8    1.43  0.2335    
## factor(Sex):HT18   1    1.1     1.1    1.93  0.1669    
## factor(Sex):ST18   1    4.7     4.7    8.24  0.0048 ** 
## factor(Sex):LG18   1    0.1     0.1    0.21  0.6452    
## Residuals        126   72.2     0.6                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modeld1.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                10   12     17    25    34   39   43    48      51    63
## Predicted   2.793 1.35  3.220 1.714 2.589 4.47 2.64 3.724  2.1520  3.00
## cvpred      2.895 1.04  3.159 1.609 2.118 4.47 2.49 3.589  2.0782  3.03
## Soma        3.000 3.00  2.500 2.000 3.000 6.00 3.00 4.000  2.0000  1.00
## CV residual 0.105 1.96 -0.659 0.391 0.882 1.53 0.51 0.411 -0.0782 -2.03
##               66     68    70     74    77    79   81    85      86    97
## Predicted   1.84 3.9347 5.131  4.219 4.749 5.029 4.70 5.442  4.5405 5.626
## cvpred      1.66 3.9806 5.031  4.333 4.737 4.989 4.74 5.367  4.5268 5.581
## Soma        3.00 4.0000 5.500  4.000 5.000 5.500 5.00 5.500  4.5000 6.000
## CV residual 1.34 0.0194 0.469 -0.333 0.263 0.511 0.26 0.133 -0.0268 0.419
##               100  103   111   119   123    124   135
## Predicted   4.631 4.73  4.31 5.004  3.96  4.924 5.327
## cvpred      4.616 4.74  4.34 4.971  4.03  4.903 5.235
## Soma        5.000 5.00  4.00 5.500  3.00  4.500 5.500
## CV residual 0.384 0.26 -0.34 0.529 -1.03 -0.403 0.265
## 
## Sum of squares = 16.8    Mean square = 0.62    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9     16    23     35    36    42    52     56    58
## Predicted   3.36 3.508 3.9879 3.178  4.403 3.962 2.651  3.15  1.904  3.54
## cvpred      3.31 3.496 3.9513 3.147  4.461 3.841 2.794  3.35  1.882  3.64
## Soma        6.00 4.000 4.0000 4.000  3.500 4.000 3.000  2.00  1.500  2.00
## CV residual 2.69 0.504 0.0487 0.853 -0.961 0.159 0.206 -1.35 -0.382 -1.64
##                65     67     72     80     88    91    95     98     101
## Predicted   2.665 4.9491  3.797  4.319  5.151  4.23 4.670  4.907  4.9818
## cvpred      2.628 4.9129  3.862  4.395  5.133  4.29 4.686  4.895  5.0102
## Soma        3.000 5.0000  3.000  4.000  5.000  4.00 5.000  4.500  5.0000
## CV residual 0.372 0.0871 -0.862 -0.395 -0.133 -0.29 0.314 -0.395 -0.0102
##                102    106   108    121   125  127   132    133   136
## Predicted    4.323  4.466 6.417  4.446 4.258 5.05  4.37 4.4271 4.830
## cvpred       4.333  4.502 6.293  4.474 4.307 5.04  4.44 4.4545 4.825
## Soma         4.000  4.000 6.500  4.000 5.000 6.50  4.00 4.5000 5.500
## CV residual -0.333 -0.502 0.207 -0.474 0.693 1.46 -0.44 0.0455 0.675
## 
## Sum of squares = 19.2    Mean square = 0.69    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                 8     14    15    22    38    40     45    47    50    53
## Predicted   3.585  3.284  3.97 2.686  3.01  2.73 3.3952  3.11 3.857  2.19
## cvpred      3.568  3.327  4.02 2.869  3.04  2.90 3.4053  3.23 3.831  2.31
## Soma        4.000  3.000  2.50 3.000  2.00  1.50 3.5000  2.00 4.000  1.00
## CV residual 0.432 -0.327 -1.52 0.131 -1.04 -1.40 0.0947 -1.23 0.169 -1.31
##                 54      55     57    60    62    64   75      76    82
## Predicted   3.9353  1.5067  1.914 3.880 3.270 5.224 4.88  5.4884 5.951
## cvpred      3.9666  1.5859  2.061 3.858 3.369 5.219 4.86  5.5261 5.848
## Soma        4.0000  1.5000  1.500 4.000 4.000 6.000 5.00  5.5000 6.500
## CV residual 0.0334 -0.0859 -0.561 0.142 0.631 0.781 0.14 -0.0261 0.652
##                 84    90    96    99   117   120    122    129
## Predicted    4.048  4.28 4.604 4.767  5.07 5.008  4.443  4.203
## cvpred       4.098  4.33 4.614 4.761  5.08 4.962  4.507  4.275
## Soma         3.500  4.00 5.000 5.000  5.00 5.500  4.000  3.500
## CV residual -0.598 -0.33 0.386 0.239 -0.08 0.538 -0.507 -0.775
## 
## Sum of squares = 12.6    Mean square = 0.47    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2      5     6     7   13     18   19   20    21      30
## Predicted   2.04  2.107 2.578 5.886 2.76  2.945 5.44 2.81  2.21  1.5573
## cvpred      1.90  2.164 2.515 5.841 2.70  2.851 5.26 2.73  2.08  1.5331
## Soma        4.00  1.500 3.000 6.000 4.00  2.000 7.00 4.00  1.00  1.5000
## CV residual 2.10 -0.664 0.485 0.159 1.30 -0.851 1.74 1.27 -1.08 -0.0331
##                33    37    49    73     92     94    104     105   107
## Predicted   2.535 1.935  3.31 4.440  5.121  4.608 4.1540  4.5715 4.368
## cvpred      2.485 1.823  3.24 4.334  5.216  4.609 3.9744  4.5901 4.247
## Soma        3.000 2.000  2.00 5.000  5.000  4.500 4.0000  4.5000 4.500
## CV residual 0.515 0.177 -1.24 0.666 -0.216 -0.109 0.0256 -0.0901 0.253
##                110    114      115   116    118    126    128   134
## Predicted    4.018  4.296  4.10027 4.369  5.010  4.303  4.919  8.41
## cvpred       3.725  4.139  4.00383 4.178  5.028  4.201  5.143  9.81
## Soma         3.500  4.000  4.00000 5.000  5.000  4.000  5.000  7.00
## CV residual -0.225 -0.139 -0.00383 0.822 -0.028 -0.201 -0.143 -2.81
## 
## Sum of squares = 24.4    Mean square = 0.9    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                  1     4    11    24    26    27     28     29    31    32
## Predicted    7.670  3.46 2.314 2.385  1.93 3.642  2.772  3.296  3.07 5.070
## cvpred       7.866  3.55 2.242 2.486  1.92 3.569  2.908  3.688  3.25 5.155
## Soma         7.000  2.00 3.000 3.000  1.00 4.000  2.000  3.000  1.50 6.000
## CV residual -0.866 -1.55 0.758 0.514 -0.92 0.431 -0.908 -0.688 -1.75 0.845
##                 41   44     46    59      61    69     71    78      83
## Predicted    2.390 2.23  2.475 2.915  2.9366 4.585  4.671 4.750  4.5749
## cvpred       2.499 2.18  2.609 2.857  3.0565 4.615  4.693 4.662  4.5413
## Soma         2.000 3.50  2.000 3.000  3.0000 5.500  4.500 5.000  4.5000
## CV residual -0.499 1.32 -0.609 0.143 -0.0565 0.885 -0.193 0.338 -0.0413
##                87     89     93    109     112     113   130     131
## Predicted   5.593  4.861  4.906  5.834  5.0336  4.5913 4.722  5.1062
## cvpred      5.474  4.853  5.004  5.823  5.0416  4.5207 4.679  5.0325
## Soma        6.000  4.500  4.500  5.500  5.0000  4.5000 5.500  5.0000
## CV residual 0.526 -0.353 -0.504 -0.323 -0.0416 -0.0207 0.821 -0.0325
## 
## Sum of squares = 14.9    Mean square = 0.55    n = 27 
## 
## Overall (Sum over all 27 folds) 
##    ms 
## 0.646
cv5res1=cv.lm(data=dat1,modeld2.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##              Df Sum Sq Mean Sq F value Pr(>F)    
## WT18          1    3.9     3.9    6.44  0.012 *  
## HT18          1  130.0   130.0  213.85 <2e-16 ***
## ST18          1   62.4    62.4  102.57 <2e-16 ***
## LG18          1    0.3     0.3    0.54  0.465    
## factor(Sex)   1    2.4     2.4    3.94  0.049 *  
## Residuals   130   79.0     0.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modeld2.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                10   12     17    25    34   39   43    48     51    63
## Predicted   2.737 1.57  3.269 1.859 2.462 4.37 2.81 3.697  2.348  3.13
## cvpred      2.819 1.47  3.205 1.845 2.298 4.29 2.71 3.596  2.303  3.11
## Soma        3.000 3.00  2.500 2.000 3.000 6.00 3.00 4.000  2.000  1.00
## CV residual 0.181 1.53 -0.705 0.155 0.702 1.71 0.29 0.404 -0.303 -2.11
##               66    68    70     74    77   79      81     85    86     97
## Predicted   2.16 3.896 5.014  4.619 4.872 5.03  4.9854  5.655  4.62  6.048
## cvpred      2.06 3.893 5.013  4.639 4.887 5.10  5.0188  5.699  4.66  6.106
## Soma        3.00 4.000 5.500  4.000 5.000 5.50  5.0000  5.500  4.50  6.000
## CV residual 0.94 0.107 0.487 -0.639 0.113 0.40 -0.0188 -0.199 -0.16 -0.106
##               100   103    111   119   123    124   135
## Predicted   4.506 4.802  4.453 4.926  3.94  4.973 5.266
## cvpred      4.511 4.748  4.444 4.981  4.03  4.991 5.282
## Soma        5.000 5.000  4.000 5.500  3.00  4.500 5.500
## CV residual 0.489 0.252 -0.444 0.519 -1.03 -0.491 0.218
## 
## Sum of squares = 15    Mean square = 0.56    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9    16    23     35   36    42    52     56    58
## Predicted   3.33 3.364 3.911 3.044  4.155 3.70 2.659  2.98  2.141  3.45
## cvpred      3.25 3.418 3.802 3.041  4.172 3.74 2.764  3.14  2.159  3.48
## Soma        6.00 4.000 4.000 4.000  3.500 4.00 3.000  2.00  1.500  2.00
## CV residual 2.75 0.582 0.198 0.959 -0.672 0.26 0.236 -1.14 -0.659 -1.48
##                65    67     72    80     88     91    95     98    101
## Predicted   2.640 4.727  3.557  4.59  5.311  4.413 4.686  4.811  5.425
## cvpred      2.656 4.825  3.624  4.70  5.451  4.586 4.795  4.758  5.586
## Soma        3.000 5.000  3.000  4.00  5.000  4.000 5.000  4.500  5.000
## CV residual 0.344 0.175 -0.624 -0.70 -0.451 -0.586 0.205 -0.258 -0.586
##               102    106     108   121  125  127    132  133   136
## Predicted   3.879  4.583  6.5709  4.49 4.24 5.22  4.714 4.30 4.704
## cvpred      3.728  4.744  6.5647  4.67 4.32 5.30  4.767 4.34 4.699
## Soma        4.000  4.000  6.5000  4.00 5.00 6.50  4.000 4.50 5.500
## CV residual 0.272 -0.744 -0.0647 -0.67 0.68 1.20 -0.767 0.16 0.801
## 
## Sum of squares = 19.6    Mean square = 0.7    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                 8     14    15     22     38    40    45    47    50    53
## Predicted   3.350  3.292  3.82 2.8342  2.886  2.94 3.231  3.06 3.640  2.38
## cvpred      3.322  3.372  3.84 2.9697  2.897  3.09 3.219  3.11 3.628  2.51
## Soma        4.000  3.000  2.50 3.0000  2.000  1.50 3.500  2.00 4.000  1.00
## CV residual 0.678 -0.372 -1.34 0.0303 -0.897 -1.59 0.281 -1.11 0.372 -1.51
##                54     55    57   60    62   64      75     76    82     84
## Predicted   3.676  1.865  2.01 3.83 3.227 4.93 5.01159  5.658 6.372  3.635
## cvpred      3.653  2.037  2.09 3.87 3.288 4.90 4.99669  5.599 6.259  3.751
## Soma        4.000  1.500  1.50 4.00 4.000 6.00 5.00000  5.500 6.500  3.500
## CV residual 0.347 -0.537 -0.59 0.13 0.712 1.10 0.00331 -0.099 0.241 -0.251
##                  90    96    99    117   120    122    129
## Predicted    4.0308 4.444 4.882  5.198 5.046  4.248  4.068
## cvpred       4.0714 4.476 4.878  5.171 5.027  4.284  4.083
## Soma         4.0000 5.000 5.000  5.000 5.500  4.000  3.500
## CV residual -0.0714 0.524 0.122 -0.171 0.473 -0.284 -0.583
## 
## Sum of squares = 13.1    Mean square = 0.48    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2      5     6     7   13     18   19   20    21     30
## Predicted   2.31  2.231 2.646 5.293 2.78  3.055 5.18 2.89  2.45  1.831
## cvpred      2.18  2.194 2.528 5.461 2.69  2.999 5.30 2.81  2.32  1.698
## Soma        4.00  1.500 3.000 6.000 4.00  2.000 7.00 4.00  1.00  1.500
## CV residual 1.82 -0.694 0.472 0.539 1.31 -0.999 1.70 1.19 -1.32 -0.198
##                33      37    49   73     92     94   104     105     107
## Predicted   2.646  2.2195  3.20 4.27  5.324  4.594 3.895  4.5322  4.5374
## cvpred      2.572  2.0639  3.16 4.22  5.325  4.634 3.822  4.5685  4.5413
## Soma        3.000  2.0000  2.00 5.00  5.000  4.500 4.000  4.5000  4.5000
## CV residual 0.428 -0.0639 -1.16 0.78 -0.325 -0.134 0.178 -0.0685 -0.0413
##                110    114   115  116   118   126   128   134
## Predicted    3.761  4.231 3.807 3.77 4.942 3.929 4.703  9.02
## cvpred       3.666  4.175 3.804 3.64 4.885 3.852 4.738  9.41
## Soma         3.500  4.000 4.000 5.00 5.000 4.000 5.000  7.00
## CV residual -0.166 -0.175 0.196 1.36 0.115 0.148 0.262 -2.41
## 
## Sum of squares = 23.3    Mean square = 0.86    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                  1     4    11    24    26    27     28     29    31   32
## Predicted    7.084  3.44 2.367 2.381  2.15 3.410  2.832  3.335  3.07 4.81
## cvpred       7.112  3.50 2.386 2.453  2.19 3.403  2.918  3.505  3.17 4.84
## Soma         7.000  2.00 3.000 3.000  1.00 4.000  2.000  3.000  1.50 6.00
## CV residual -0.112 -1.50 0.614 0.547 -1.19 0.597 -0.918 -0.505 -1.67 1.16
##                 41    44     46     59      61   69   71     78    83
## Predicted    2.624 2.527  2.627 2.9111  2.9435 4.34 4.34 5.0117 4.517
## cvpred       2.703 2.559  2.714 2.9275  3.0192 4.33 4.35 4.9031 4.446
## Soma         2.000 3.500  2.000 3.0000  3.0000 5.50 4.50 5.0000 4.500
## CV residual -0.703 0.941 -0.714 0.0725 -0.0192 1.17 0.15 0.0969 0.054
##                87     89    93   109   112    113   130     131
## Predicted   5.940  4.879 4.304  6.27 4.891 4.4956 4.680  5.0991
## cvpred      5.839  4.828 4.377  6.26 4.889 4.4101 4.633  5.0241
## Soma        6.000  4.500 4.500  5.50 5.000 4.5000 5.500  5.0000
## CV residual 0.161 -0.328 0.123 -0.76 0.111 0.0899 0.867 -0.0241
## 
## Sum of squares = 14.7    Mean square = 0.55    n = 27 
## 
## Overall (Sum over all 27 folds) 
##   ms 
## 0.63
cv5res1=cv.lm(data=dat1,modeld3.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##                   Df Sum Sq Mean Sq F value Pr(>F)    
## WT18               1    3.9     3.9    6.87 0.0098 ** 
## HT18               1  130.0   130.0  228.10 <2e-16 ***
## ST18               1   62.4    62.4  109.41 <2e-16 ***
## LG18               1    0.3     0.3    0.57 0.4508    
## WT18:factor(Sex)   1    1.4     1.4    2.47 0.1185    
## factor(Sex):HT18   1    2.5     2.5    4.32 0.0396 *  
## factor(Sex):ST18   1    4.6     4.6    8.08 0.0052 ** 
## factor(Sex):LG18   1    0.6     0.6    0.99 0.3205    
## Residuals        127   72.4     0.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modeld3.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                10   12     17    25    34   39    43    48      51    63
## Predicted   2.800 1.33  3.225 1.733 2.507 4.47 2.633 3.675  2.1819  3.01
## cvpred      2.894 1.05  3.158 1.607 2.136 4.47 2.492 3.598  2.0731  3.03
## Soma        3.000 3.00  2.500 2.000 3.000 6.00 3.000 4.000  2.0000  1.00
## CV residual 0.106 1.95 -0.658 0.393 0.864 1.53 0.508 0.402 -0.0731 -2.03
##               66    68    70     74    77    79    81    85      86    97
## Predicted   1.84 3.920 5.112  4.232 4.736 5.000 4.701 5.414  4.4963 5.612
## cvpred      1.66 3.984 5.036  4.331 4.741 4.995 4.741 5.373  4.5364 5.585
## Soma        3.00 4.000 5.500  4.000 5.000 5.500 5.000 5.500  4.5000 6.000
## CV residual 1.34 0.016 0.464 -0.331 0.259 0.505 0.259 0.127 -0.0364 0.415
##               100   103    111   119   123    124   135
## Predicted   4.637 4.780  4.301 4.997  3.92  4.927 5.319
## cvpred      4.615 4.731  4.342 4.973  4.04  4.903 5.237
## Soma        5.000 5.000  4.000 5.500  3.00  4.500 5.500
## CV residual 0.385 0.269 -0.342 0.527 -1.04 -0.403 0.263
## 
## Sum of squares = 16.7    Mean square = 0.62    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9     16    23     35      36    42    52     56
## Predicted   3.36 3.525 3.9777 3.189  4.376  4.0266 2.609  3.09  1.925
## cvpred      3.31 3.555 3.9154 3.176  4.388  4.0394 2.681  3.19  1.946
## Soma        6.00 4.000 4.0000 4.000  3.500  4.0000 3.000  2.00  1.500
## CV residual 2.69 0.445 0.0846 0.824 -0.888 -0.0394 0.319 -1.19 -0.446
##                58    65      67     72     80     88     91    95     98
## Predicted    3.49 2.686  4.9901  3.801  4.289  5.190  4.252 4.677  4.890
## cvpred       3.52 2.689  5.0436  3.883  4.355  5.275  4.402 4.737  4.842
## Soma         2.00 3.000  5.0000  3.000  4.000  5.000  4.000 5.000  4.500
## CV residual -1.52 0.311 -0.0436 -0.883 -0.355 -0.275 -0.402 0.263 -0.342
##                 101    102    106   108    121   125  127    132  133
## Predicted    4.9885  4.285  4.497 6.443  4.494 4.252 5.09  4.361 4.41
## cvpred       5.0814  4.188  4.626 6.372  4.644 4.314 5.16  4.436 4.43
## Soma         5.0000  4.000  4.000 6.500  4.000 5.000 6.50  4.000 4.50
## CV residual -0.0814 -0.188 -0.626 0.128 -0.644 0.686 1.34 -0.436 0.07
##               136
## Predicted   4.808
## cvpred      4.772
## Soma        5.500
## CV residual 0.728
## 
## Sum of squares = 18.2    Mean square = 0.65    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                8     14    15    22    38    40     45    47     50    53
## Predicted   3.61  3.324  3.94 2.653  3.02  2.70 3.3966  3.09 3.8955  2.19
## cvpred      3.63  3.407  3.98 2.798  3.08  2.83 3.4133  3.19 3.9145  2.31
## Soma        4.00  3.000  2.50 3.000  2.00  1.50 3.5000  2.00 4.0000  1.00
## CV residual 0.37 -0.407 -1.48 0.202 -1.08 -1.33 0.0867 -1.19 0.0855 -1.31
##                 54     55     57     60    62    64    75    76    82
## Predicted   3.9267  1.561  1.874 3.9199 3.259 5.189 4.881 5.402 5.967
## cvpred      3.9548  1.692  1.982 3.9405 3.348 5.153 4.865 5.308 5.863
## Soma        4.0000  1.500  1.500 4.0000 4.000 6.000 5.000 5.500 6.500
## CV residual 0.0452 -0.192 -0.482 0.0595 0.652 0.847 0.135 0.192 0.637
##                 84     90    96   99    117   120    122    129
## Predicted    4.090  4.277 4.628 4.77 5.0389 5.049  4.416  4.162
## cvpred       4.212  4.331 4.671 4.76 4.9977 5.052  4.447  4.182
## Soma         3.500  4.000 5.000 5.00 5.0000 5.500  4.000  3.500
## CV residual -0.712 -0.331 0.329 0.24 0.0023 0.448 -0.447 -0.682
## 
## Sum of squares = 12.1    Mean square = 0.45    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2      5     6     7   13     18   19   20    21      30
## Predicted   2.07  2.034 2.618 5.865 2.79  2.929 5.39 2.82  2.23  1.5502
## cvpred      1.88  2.197 2.495 5.854 2.68  2.858 5.28 2.73  2.07  1.5323
## Soma        4.00  1.500 3.000 6.000 4.00  2.000 7.00 4.00  1.00  1.5000
## CV residual 2.12 -0.697 0.505 0.146 1.32 -0.858 1.72 1.27 -1.07 -0.0323
##                33    37    49   73    92     94    104     105   107
## Predicted   2.526 1.964  3.36 4.43  5.11  4.609 4.1535  4.5871 4.356
## cvpred      2.487 1.805  3.21 4.34  5.22  4.609 3.9783  4.5826 4.256
## Soma        3.000 2.000  2.00 5.00  5.00  4.500 4.0000  4.5000 4.500
## CV residual 0.513 0.195 -1.21 0.66 -0.22 -0.109 0.0217 -0.0826 0.244
##                110    114    115   116     118    126    128   134
## Predicted    3.986  4.286 4.1310 4.338  4.9842  4.319  4.984  8.48
## cvpred       3.746  4.147 3.9913 4.196  5.0393  4.196  5.107  9.74
## Soma         3.500  4.000 4.0000 5.000  5.0000  4.000  5.000  7.00
## CV residual -0.246 -0.147 0.0087 0.804 -0.0393 -0.196 -0.107 -2.74
## 
## Sum of squares = 24.1    Mean square = 0.89    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                  1     4    11   24     26   27     28     29    31    32
## Predicted    7.618  3.46 2.293 2.44  1.938 3.62  2.794  3.376  3.10 5.034
## cvpred       7.904  3.55 2.249 2.46  1.919 3.58  2.895  3.649  3.24 5.177
## Soma         7.000  2.00 3.000 3.00  1.000 4.00  2.000  3.000  1.50 6.000
## CV residual -0.904 -1.55 0.751 0.54 -0.919 0.42 -0.895 -0.649 -1.74 0.823
##                 41   44     46    59      61   69    71    78      83
## Predicted    2.399 2.18  2.501 2.879  2.9593 4.60  4.66 4.775  4.5978
## cvpred       2.495 2.20  2.596 2.872  3.0446 4.61  4.70 4.651  4.5325
## Soma         2.000 3.50  2.000 3.000  3.0000 5.50  4.50 5.000  4.5000
## CV residual -0.495 1.30 -0.596 0.128 -0.0446 0.89 -0.20 0.349 -0.0325
##                87     89     93    109     112     113   130     131
## Predicted   5.594  4.889  4.890  5.846  5.0289  4.5981 4.720  5.1064
## cvpred      5.472  4.842  5.012  5.817  5.0436  4.5174 4.679  5.0316
## Soma        6.000  4.500  4.500  5.500  5.0000  4.5000 5.500  5.0000
## CV residual 0.528 -0.342 -0.512 -0.317 -0.0436 -0.0174 0.821 -0.0316
## 
## Sum of squares = 14.7    Mean square = 0.54    n = 27 
## 
## Overall (Sum over all 27 folds) 
##    ms 
## 0.631
cv5res1=cv.lm(data=dat1,modeld4.lm,m=5)
## Analysis of Variance Table
## 
## Response: Soma
##            Df Sum Sq Mean Sq F value Pr(>F)    
## WT18        1    3.9     3.9    6.30  0.013 *  
## HT18        1  130.0   130.0  209.15 <2e-16 ***
## ST18        1   62.4    62.4  100.32 <2e-16 ***
## LG18        1    0.3     0.3    0.52  0.470    
## Residuals 131   81.4     0.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning in cv.lm(data = dat1, modeld4.lm, m = 5): 
## 
##  As there is >1 explanatory variable, cross-validation
##  predicted values for a fold are not a linear function
##  of corresponding overall predicted values.  Lines that
##  are shown for the different folds are approximate

## 
## fold 1 
## Observations in test set: 27 
##                 10   12     17     25    34   39   43    48     51    63
## Predicted   2.8197 1.68  3.258 1.9400 2.875 4.36 2.76 3.713  2.310  3.01
## cvpred      2.9291 1.61  3.176 1.9534 2.817 4.24 2.64 3.612  2.251  2.95
## Soma        3.0000 3.00  2.500 2.0000 3.000 6.00 3.00 4.000  2.000  1.00
## CV residual 0.0709 1.39 -0.676 0.0466 0.183 1.76 0.36 0.388 -0.251 -1.95
##               66    68    70     74    77    79      81     85     86
## Predicted   2.04 3.876 4.912  4.733 4.870 4.925  5.0284  5.646  4.613
## cvpred      1.91 3.882 4.866  4.804 4.875 4.965  5.0767  5.652  4.625
## Soma        3.00 4.000 5.500  4.000 5.000 5.500  5.0000  5.500  4.500
## CV residual 1.09 0.118 0.634 -0.804 0.125 0.535 -0.0767 -0.152 -0.125
##                 97   100   103    111   119    123    124   135
## Predicted    6.097 4.403 4.797  4.495 4.792  3.868  4.920 5.159
## cvpred       6.137 4.402 4.769  4.497 4.826  3.956  4.931 5.136
## Soma         6.000 5.000 5.000  4.000 5.500  3.000  4.500 5.500
## CV residual -0.137 0.598 0.231 -0.497 0.674 -0.956 -0.431 0.364
## 
## Sum of squares = 14.6    Mean square = 0.54    n = 27 
## 
## fold 2 
## Observations in test set: 28 
##                3     9    16    23     35       36     42    52     56
## Predicted   3.35 3.591 3.877 3.258  4.336  4.01635 2.8327  3.31  2.129
## cvpred      3.26 3.607 3.772 3.207  4.311  4.00369 2.9096  3.40  2.176
## Soma        6.00 4.000 4.000 4.000  3.500  4.00000 3.0000  2.00  1.500
## CV residual 2.74 0.393 0.228 0.793 -0.811 -0.00369 0.0904 -1.40 -0.676
##                58    65   67    72     80    88     91    95     98    101
## Predicted    3.56 2.817 4.61  3.46  4.709  5.35  4.506 4.687  4.679  5.595
## cvpred       3.57 2.803 4.76  3.57  4.826  5.50  4.679 4.826  4.665  5.746
## Soma         2.00 3.000 5.00  3.00  4.000  5.00  4.000 5.000  4.500  5.000
## CV residual -1.57 0.197 0.24 -0.57 -0.826 -0.50 -0.679 0.174 -0.165 -0.746
##               102    106     108    121   125  127    132   133   136
## Predicted   3.592  4.638  6.4945  4.522 4.229 5.22  4.799 4.226 4.600
## cvpred      3.509  4.808  6.5141  4.713 4.334 5.29  4.838 4.313 4.645
## Soma        4.000  4.000  6.5000  4.000 5.000 6.50  4.000 4.500 5.500
## CV residual 0.491 -0.808 -0.0141 -0.713 0.666 1.21 -0.838 0.187 0.855
## 
## Sum of squares = 21.1    Mean square = 0.75    n = 28 
## 
## fold 3 
## Observations in test set: 27 
##                 8     14    15     22    38    40     45    47     50
## Predicted   3.624  3.342  3.92 2.8359  3.11  2.81 3.3980  3.25 3.8594
## cvpred      3.663  3.444  3.97 2.9681  3.18  2.95 3.4347  3.34 3.9045
## Soma        4.000  3.000  2.50 3.0000  2.00  1.50 3.5000  2.00 4.0000
## CV residual 0.337 -0.444 -1.47 0.0319 -1.18 -1.45 0.0653 -1.34 0.0955
##                53      54     55     57    60    62   64      75     76
## Predicted    2.33  3.9650  1.638  2.096 3.773 3.363 4.98  5.0240  5.574
## cvpred       2.45  4.0021  1.791  2.194 3.833 3.453 4.98  5.0121  5.531
## Soma         1.00  4.0000  1.500  1.500 4.000 4.000 6.00  5.0000  5.500
## CV residual -1.45 -0.0021 -0.291 -0.694 0.167 0.547 1.02 -0.0121 -0.031
##                82     84    90    96     99    117   120   122    129
## Predicted   6.390  3.524 3.869 4.339 4.9026  5.169 4.984  4.11  3.928
## cvpred      6.291  3.603 3.885 4.348 4.9025  5.149 4.951  4.13  3.932
## Soma        6.500  3.500 4.000 5.000 5.0000  5.000 5.500  4.00  3.500
## CV residual 0.209 -0.103 0.115 0.652 0.0975 -0.149 0.549 -0.13 -0.432
## 
## Sum of squares = 12.8    Mean square = 0.48    n = 27 
## 
## fold 4 
## Observations in test set: 27 
##                2      5     6     7   13     18   19   20    21      30
## Predicted   2.07  2.313 2.704 5.701 2.84  3.007 5.21 2.89  2.27  1.7510
## cvpred      1.95  2.228 2.555 5.816 2.71  2.947 5.36 2.80  2.15  1.5936
## Soma        4.00  1.500 3.000 6.000 4.00  2.000 7.00 4.00  1.00  1.5000
## CV residual 2.05 -0.728 0.445 0.184 1.29 -0.947 1.64 1.20 -1.15 -0.0936
##                33     37    49    73     92      94   104    105     107
## Predicted   2.641 2.0585  3.26 4.163  5.351  4.4969 3.780 4.4524  4.5538
## cvpred      2.545 1.9035  3.19 4.117  5.354  4.5381 3.707 4.4877  4.5408
## Soma        3.000 2.0000  2.00 5.000  5.000  4.5000 4.000 4.5000  4.5000
## CV residual 0.455 0.0965 -1.19 0.883 -0.354 -0.0381 0.293 0.0123 -0.0408
##                 110    114   115  116   118   126   128   134
## Predicted    3.6110  4.184 3.662 3.46 4.857 3.783 4.615  9.01
## cvpred       3.5175  4.122 3.658 3.37 4.816 3.715 4.662  9.46
## Soma         3.5000  4.000 4.000 5.00 5.000 4.000 5.000  7.00
## CV residual -0.0175 -0.122 0.342 1.63 0.184 0.285 0.338 -2.46
## 
## Sum of squares = 24.7    Mean square = 0.92    n = 27 
## 
## fold 5 
## Observations in test set: 27 
##                  1     4    11    24    26    27     28    29    31   32
## Predicted    7.115  3.47 2.519 2.505  2.07 3.648  2.885  3.33  3.17 4.89
## cvpred       7.142  3.52 2.528 2.582  2.11 3.637  2.964  3.49  3.26 4.92
## Soma         7.000  2.00 3.000 3.000  1.00 4.000  2.000  3.00  1.50 6.00
## CV residual -0.142 -1.52 0.472 0.418 -1.11 0.363 -0.964 -0.49 -1.76 1.08
##                 41   44     46      59      61   69   71     78    83
## Predicted    2.488 2.39  2.578  3.0539  3.0192 4.23 4.14 5.0475 4.456
## cvpred       2.571 2.42  2.666  3.0569  3.0909 4.21 4.16 4.9352 4.381
## Soma         2.000 3.50  2.000  3.0000  3.0000 5.50 4.50 5.0000 4.500
## CV residual -0.571 1.08 -0.666 -0.0569 -0.0909 1.29 0.34 0.0648 0.119
##                87     89    93    109   112   113  130    131
## Predicted   5.898  4.854 4.020  6.348 4.757 4.374 4.58 4.9661
## cvpred      5.809  4.793 4.093  6.321 4.755 4.296 4.54 4.9022
## Soma        6.000  4.500 4.500  5.500 5.000 4.500 5.50 5.0000
## CV residual 0.191 -0.293 0.407 -0.821 0.245 0.204 0.96 0.0978
## 
## Sum of squares = 15.3    Mean square = 0.57    n = 27 
## 
## Overall (Sum over all 27 folds) 
##    ms 
## 0.651