DATA 607 Ch.3 Data Science for Business - Decision Tree

url <- "https://raw.githubusercontent.com/wheremagichappens/an.dy/master/DATA607/fitnessAppLog.csv"
fitness <- read.table(url, sep=",", header=T)

library("rpart")

treeAnalysis <- rpart(PayOrNot~Incomes+GymVisits+State,data=fitness)

library("rpart.plot")
## Warning: package 'rpart.plot' was built under R version 3.4.3
fitness
##     Incomes GymVisits State Hours PayOrNot
## 1       100         4    TX   9.3        P
## 2        50         3    CA   4.8       NP
## 3       100         4    TX   8.9        P
## 4       100         2    NY   6.5        P
## 5        50         2    MD   4.2       NP
## 6        80         2    CA   6.2       NP
## 7        75         3    WA   7.4       NP
## 8        65         4    SD   6.0       NP
## 9        90         3    ND   7.6        P
## 10       90         2    TX   6.1       NP
## 11      100         1    TX   9.3        P
## 12       50         3    CA   4.8       NP
## 13      100         4    TX   8.9       NP
## 14      100         2    NY   6.5       NP
## 15       50         2    MD   4.2       NP
## 16       80         0    CA   6.2       NP
## 17       75         3    WA   7.4       NP
## 18       65         4    SD   6.0       NP
## 19       90         3    ND   7.6       NP
## 20       90         2    TX   6.1       NP
## 21      100         4    TX   9.3        P
## 22       50         0    CA   4.8       NP
## 23      100         4    TX   8.9       NP
## 24      100         2    NY   6.5       NP
## 25       50         2    MD   4.2       NP
## 26       80         2    CA   6.2       NP
## 27       75         3    WA   7.4       NP
## 28       65         4    SD   6.0       NP
## 29       90         3    ND   7.6       NP
## 30       90         2    TX   6.1       NP
## 31      100         4    TX   9.3        P
## 32       50         3    CA   4.8       NP
## 33      100         4    TX   8.9        P
## 34      100         2    NY   6.5       NP
## 35       50         2    MD   4.2       NP
## 36       80         2    CA   6.2        P
## 37       75         3    WA   7.4       NP
## 38       65         4    SD   6.0       NP
## 39       90         3    ND   7.6       NP
## 40       90         2    TX   6.1       NP
## 41      100         4    TX   9.3        P
## 42       50         3    CA   4.8       NP
## 43      100         4    TX   8.9        P
## 44      100         2    NY   6.5       NP
## 45       50         2    MD   4.2        P
## 46       80         7    CA   6.2        P
## 47       75         3    WA   7.4       NP
## 48       65         4    SD   6.0       NP
## 49       90         3    ND   7.6       NP
## 50       90         2    TX   6.1        P
## 51      100         4    TX   9.3        P
## 52       50         3    CA   4.8       NP
## 53      100         4    TX   8.9        P
## 54      100         2    NY   6.5       NP
## 55       50         2    MD   4.2       NP
## 56       80         2    CA   6.2       NP
## 57       75         3    WA   7.4       NP
## 58       65         4    SD   6.0       NP
## 59       90         3    ND   7.6       NP
## 60       90         2    TX   6.1       NP
## 61      100         6    TX   9.3        P
## 62       50         3    CA   4.8       NP
## 63      100         7    TX   8.9        P
## 64      100         2    NY   6.5       NP
## 65       50         2    MD   4.2       NP
## 66       80         2    CA   6.2       NP
## 67       75         3    WA   7.4       NP
## 68       65         4    SD   6.0       NP
## 69       90         3    ND   7.6       NP
## 70       90         2    TX   6.1       NP
## 71      100         6    TX   9.3        P
## 72       50         3    CA   4.8       NP
## 73      100         4    TX   8.9        P
## 74      100         2    NY   6.5       NP
## 75       50         2    MD   4.2       NP
## 76       80         2    CA   6.2       NP
## 77       75         3    WA   7.4       NP
## 78       65         4    SD   6.0       NP
## 79       90         3    ND   7.6       NP
## 80       90         2    TX   6.1       NP
## 81      100         4    TX   9.3        P
## 82       50         3    CA   4.8       NP
## 83      100         4    TX   8.9        P
## 84       40         6    NY   6.5       NP
## 85       50         2    MD   4.2       NP
## 86       80         2    CA   6.2       NP
## 87       75         3    WA   7.4        P
## 88       65         4    SD   6.0       NP
## 89       90         3    ND   7.6        P
## 90       90         2    TX   6.1       NP
## 91      100         4    TX   9.3        P
## 92       50         3    CA   4.8       NP
## 93      100         4    TX   8.9        P
## 94      100         2    NY   6.5       NP
## 95       50         2    MD   4.2       NP
## 96       80         2    CA   6.2       NP
## 97       75         3    WA   7.4        P
## 98       65         4    SD   6.0       NP
## 99       90         3    ND   7.6        P
## 100      90         2    TX   6.1       NP
rpart.plot(treeAnalysis,extra=4)