store.df<- read.csv("store24.csv",sep = ",")
View(store.df)
mean(store.df$Profit)
## [1] 276313.6
sd(store.df$Profit)
## [1] 89404.08
mean(store.df$MTenure)
## [1] 45.29644
sd(store.df$MTenure)
## [1] 57.67155
mean(store.df$CTenure)
## [1] 13.9315
sd(store.df$CTenure)
## [1] 17.69752

```

newdata1 <- store.df[order(store.df$store),] 
newdata1[1:10,] 
##    store   Sales Profit   MTenure   CTenure   Pop     Comp Visibility
## 1      1 1060294 265014   0.00000 24.804930  7535 2.797888          3
## 2      2 1619874 424007  86.22219  6.636550  8630 4.235555          4
## 3      3 1099921 222735  23.88854  5.026694  9695 4.494666          3
## 4      4 1053860 210122   0.00000  5.371663  2797 4.253946          4
## 5      5 1227841 300480   3.87737  6.866530 20335 1.651364          2
## 6      6 1703140 469050 149.93590 11.351130 16926 3.184613          3
## 7      7 1809256 476355  62.53080  7.326488 17754 3.377900          2
## 8      8 1378482 361115   0.00000 56.772080 20824 2.895114          4
## 9      9 2113089 474725 108.99350  6.061602 26519 2.637630          2
## 10    10 1080979 278625  31.47899 23.195070 16381 2.270771          4
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 1         3   1       1      3.56 3.150000  86.84327
## 2         3   1       1      3.20 3.556667  94.73510
## 3         3   1       1      3.80 4.116667  78.94776
## 4         2   1       1      2.06 4.100000 100.00000
## 5         5   0       1      3.65 3.588889  68.42164
## 6         4   1       0      3.58 4.605556  94.73510
## 7         5   1       1      3.94 4.100000  81.57837
## 8         3   1       1      3.98 3.800000  78.94776
## 9         4   1       1      3.22 3.583333 100.00000
## 10        3   1       0      3.54 3.561111 100.00000
newdata2 <- store.df[order(store.df$Sales),] 
newdata2[1:10,] 
##    store  Sales Profit     MTenure   CTenure   Pop     Comp Visibility
## 57    57 699306 122180  24.3485700  2.956879  3642 2.973376          3
## 61    61 716589 177046  21.8184200 13.305950  3014 3.263994          3
## 41    41 744211 147327  14.9180200 11.926080  9701 4.364600          2
## 54    54 811190 159792   6.6703910  3.876797  3747 3.756011          3
## 32    32 828918 149033  36.0792600  6.636550  9697 4.641468          3
## 72    72 848140 196772 126.4745000 27.449690  3151 3.680586          2
## 13    13 857843 152513   0.6571813  1.577002 14186 4.435671          3
## 66    66 879581 146058 115.2039000  3.876797  1046 6.569790          2
## 16    16 883864 196277  23.6585300  4.681725  6872 3.344703          3
## 26    26 898548 211912   0.6571813 20.435320  9999 4.178195          3
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 57        2   1       1      3.35 2.956667 84.21266
## 61        1   1       1      3.07 3.126667 73.68654
## 41        3   1       1      3.03 3.672222 81.13993
## 54        2   1       1      3.08 3.933333 65.78734
## 32        3   1       0      3.28 3.550000 73.68654
## 72        1   1       1      3.73 3.416667 73.68654
## 13        2   1       1      4.10 3.000000 76.30609
## 66        3   1       1      4.03 3.673333 80.26675
## 16        3   1       0      3.05 4.000000 97.36939
## 26        2   1       1      3.52 3.100000 97.36939
newdata3 <- store.df[order(store.df$Profit),] 
newdata3[1:10,] 
##    store   Sales Profit     MTenure   CTenure   Pop     Comp Visibility
## 57    57  699306 122180  24.3485700  2.956879  3642 2.973376          3
## 66    66  879581 146058 115.2039000  3.876797  1046 6.569790          2
## 41    41  744211 147327  14.9180200 11.926080  9701 4.364600          2
## 55    55  925744 147672   6.6703910 18.365500 10532 6.389294          4
## 32    32  828918 149033  36.0792600  6.636550  9697 4.641468          3
## 13    13  857843 152513   0.6571813  1.577002 14186 4.435671          3
## 54    54  811190 159792   6.6703910  3.876797  3747 3.756011          3
## 52    52 1073008 169201  24.1185600  3.416838 14859 6.585143          3
## 61    61  716589 177046  21.8184200 13.305950  3014 3.263994          3
## 37    37 1202917 187765  23.1985000  1.347023  8870 4.491863          3
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 57        2   1       1      3.35 2.956667 84.21266
## 66        3   1       1      4.03 3.673333 80.26675
## 41        3   1       1      3.03 3.672222 81.13993
## 55        3   1       1      3.49 3.477778 76.31346
## 32        3   1       0      3.28 3.550000 73.68654
## 13        2   1       1      4.10 3.000000 76.30609
## 54        2   1       1      3.08 3.933333 65.78734
## 52        3   1       1      3.83 3.833333 94.73510
## 61        1   1       1      3.07 3.126667 73.68654
## 37        3   1       1      3.38 4.016667 73.68654
newdata4 <- store.df[order(store.df$MTenure),] 
newdata4[1:10,] 
##    store   Sales Profit   MTenure    CTenure   Pop     Comp Visibility
## 1      1 1060294 265014 0.0000000 24.8049300  7535 2.797888          3
## 4      4 1053860 210122 0.0000000  5.3716630  2797 4.253946          4
## 8      8 1378482 361115 0.0000000 56.7720800 20824 2.895114          4
## 15    15 1005627 203951 0.0000000  8.4763860  8684 3.844220          3
## 25    25 1282886 282124 0.0000000 10.3162200  6183 3.517020          3
## 31    31  993597 211885 0.0000000 10.7761800  2578 3.100689          2
## 64    64  969509 221157 0.0000000  0.8870637 17110 2.378613          4
## 13    13  857843 152513 0.6571813  1.5770020 14186 4.435671          3
## 26    26  898548 211912 0.6571813 20.4353200  9999 4.178195          3
## 75    75 1321870 296826 2.2672760  8.7063660  8966 1.886111          4
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 1         3   1       1      3.56 3.150000  86.84327
## 4         2   1       1      2.06 4.100000 100.00000
## 8         3   1       1      3.98 3.800000  78.94776
## 15        4   1       1      3.50 3.427778  94.73510
## 25        3   1       1      2.93 3.500000  86.84327
## 31        2   1       1      2.86 3.673333  88.92860
## 64        3   1       1      3.28 3.311111  79.47388
## 13        2   1       1      4.10 3.000000  76.30609
## 26        2   1       1      3.52 3.100000  97.36939
## 75        4   0       1      3.57 3.344445  89.47388
newdata5 <- store.df[order(store.df$CTenure),] 
newdata5[1:10,] 
##    store   Sales Profit    MTenure   CTenure   Pop     Comp Visibility
## 64    64  969509 221157  0.0000000 0.8870637 17110 2.378613          4
## 37    37 1202917 187765 23.1985000 1.3470230  8870 4.491863          3
## 13    13  857843 152513  0.6571813 1.5770020 14186 4.435671          3
## 38    38  991524 203184 15.6080600 1.5770020  6557 4.225993          3
## 11    11 1583446 389886 44.8197700 2.0369610 21550 3.272398          2
## 68    68 1018195 236339 17.4481600 2.2669400  9018 3.504810          4
## 56    56  916197 189235  4.7974240 2.7268990 13740 4.597269          2
## 14    14 1171491 261571 87.3722600 2.9568790  6898 4.233057          4
## 57    57  699306 122180 24.3485700 2.9568790  3642 2.973376          3
## 23    23 1351972 277414 12.3878700 3.4168380 13797 3.594539          3
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 64        3   1       1      3.28 3.311111  79.47388
## 37        3   1       1      3.38 4.016667  73.68654
## 13        2   1       1      4.10 3.000000  76.30609
## 38        2   1       1      3.68 4.494444 100.00000
## 11        5   1       1      3.43 3.200000 100.00000
## 68        2   1       1      2.83 3.000000  81.31677
## 56        3   1       0      3.10 3.800000  64.35046
## 14        2   1       1      2.54 3.890000 100.00000
## 57        2   1       1      3.35 2.956667  84.21266
## 23        4   1       1      3.65 3.588889 100.00000
newdata6 <- store.df[order(-store.df$store),] 
newdata6[1:10,] 
##    store   Sales Profit    MTenure   CTenure   Pop     Comp Visibility
## 75    75 1321870 296826   2.267276  8.706366  8966 1.886111          4
## 74    74 1782957 518998 171.097200 29.519510 10913 2.319850          3
## 73    73 1115450 279193  41.139550  6.406571  6276 4.180132          4
## 72    72  848140 196772 126.474500 27.449690  3151 3.680586          2
## 71    71  977566 198529  43.899720 38.373720  3265 3.856324          2
## 70    70 1207204 254203  14.918020  3.876797 19809 3.122484          3
## 69    69 1574290 375393  44.129730 26.759750  5050 3.949484          3
## 68    68 1018195 236339  17.448160  2.266940  9018 3.504810          4
## 67    67 1228052 362067   5.257451  3.416838 11552 3.583143          3
## 66    66  879581 146058 115.203900  3.876797  1046 6.569790          2
##    PedCount Res Hours24 CrewSkill MgrSkill ServQual
## 75        4   0       1      3.57 3.344445 89.47388
## 74        4   1       0      3.50 4.405556 94.73878
## 73        3   1       1      3.20 4.083333 85.96640
## 72        1   1       1      3.73 3.416667 73.68654
## 71        1   1       1      3.88 3.466667 79.94253
## 70        4   1       0      3.24 3.538889 78.94407
## 69        3   1       1      3.56 3.940000 92.89294
## 68        2   1       1      2.83 3.000000 81.31677
## 67        3   1       1      3.37 4.150000 97.36939
## 66        3   1       1      4.03 3.673333 80.26675
newdata7 <- store.df[order(-store.df$Sales),] 
newdata7[1:10,] 
##    store   Sales Profit   MTenure    CTenure   Pop     Comp Visibility
## 9      9 2113089 474725 108.99350   6.061602 26519 2.637630          2
## 30    30 1874873 333607  73.34144  23.425050  1116 3.578323          3
## 7      7 1809256 476355  62.53080   7.326488 17754 3.377900          2
## 44    44 1807740 439781 182.23640 114.151900 20624 3.628561          3
## 74    74 1782957 518998 171.09720  29.519510 10913 2.319850          3
## 18    18 1704826 394039 239.96980  33.774130  3807 3.994713          5
## 6      6 1703140 469050 149.93590  11.351130 16926 3.184613          3
## 47    47 1665657 387853  12.84790   6.636550 23623 2.422707          2
## 2      2 1619874 424007  86.22219   6.636550  8630 4.235555          4
## 45    45 1602362 410149  47.64565   9.166325 17808 3.472609          5
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 9         4   1       1      3.22 3.583333 100.00000
## 30        2   1       1      3.52 3.473333 100.00000
## 7         5   1       1      3.94 4.100000  81.57837
## 44        4   0       1      4.06 4.172222  86.84327
## 74        4   1       0      3.50 4.405556  94.73878
## 18        3   1       1      3.18 3.866667  97.36939
## 6         4   1       0      3.58 4.605556  94.73510
## 47        5   1       1      4.23 3.950000  99.80105
## 2         3   1       1      3.20 3.556667  94.73510
## 45        3   1       1      3.58 4.622222 100.00000
newdata8 <- store.df[order(-store.df$Profit),] 
newdata8[1:10,] 
##    store   Sales Profit   MTenure    CTenure   Pop     Comp Visibility
## 74    74 1782957 518998 171.09720  29.519510 10913 2.319850          3
## 7      7 1809256 476355  62.53080   7.326488 17754 3.377900          2
## 9      9 2113089 474725 108.99350   6.061602 26519 2.637630          2
## 6      6 1703140 469050 149.93590  11.351130 16926 3.184613          3
## 44    44 1807740 439781 182.23640 114.151900 20624 3.628561          3
## 2      2 1619874 424007  86.22219   6.636550  8630 4.235555          4
## 45    45 1602362 410149  47.64565   9.166325 17808 3.472609          5
## 18    18 1704826 394039 239.96980  33.774130  3807 3.994713          5
## 11    11 1583446 389886  44.81977   2.036961 21550 3.272398          2
## 47    47 1665657 387853  12.84790   6.636550 23623 2.422707          2
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 74        4   1       0      3.50 4.405556  94.73878
## 7         5   1       1      3.94 4.100000  81.57837
## 9         4   1       1      3.22 3.583333 100.00000
## 6         4   1       0      3.58 4.605556  94.73510
## 44        4   0       1      4.06 4.172222  86.84327
## 2         3   1       1      3.20 3.556667  94.73510
## 45        3   1       1      3.58 4.622222 100.00000
## 18        3   1       1      3.18 3.866667  97.36939
## 11        5   1       1      3.43 3.200000 100.00000
## 47        5   1       1      4.23 3.950000  99.80105
newdata9 <- store.df[order(-store.df$MTenure),] 
newdata9[1:10,] 
##    store   Sales Profit  MTenure    CTenure   Pop      Comp Visibility
## 12    12 1444714 329020 277.9877   6.636550 11160  4.903895          4
## 18    18 1704826 394039 239.9698  33.774130  3807  3.994713          5
## 44    44 1807740 439781 182.2364 114.151900 20624  3.628561          3
## 43    43 1296711 337233 177.5704   5.486653  3495  3.653641          4
## 74    74 1782957 518998 171.0972  29.519510 10913  2.319850          3
## 65    65 1349972 301641 150.2317  23.425050  1075  3.218960          3
## 6      6 1703140 469050 149.9359  11.351130 16926  3.184613          3
## 72    72  848140 196772 126.4745  27.449690  3151  3.680586          2
## 40    40 1042664 222913 122.7943  16.755650  2521 11.127880          3
## 66    66  879581 146058 115.2039   3.876797  1046  6.569790          2
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 12        4   1       0      3.35 3.238889 100.00000
## 18        3   1       1      3.18 3.866667  97.36939
## 44        4   0       1      4.06 4.172222  86.84327
## 43        3   1       1      3.73 3.608233  94.73510
## 74        4   1       0      3.50 4.405556  94.73878
## 65        1   1       1      3.73 3.440000  63.15673
## 6         4   1       0      3.58 4.605556  94.73510
## 72        1   1       1      3.73 3.416667  73.68654
## 40        4   1       1      3.45 4.194445  78.94776
## 66        3   1       1      4.03 3.673333  80.26675
newdata10 <- store.df[order(-store.df$CTenure),] 
newdata10[1:10,] 
##    store   Sales Profit    MTenure   CTenure   Pop     Comp Visibility
## 44    44 1807740 439781 182.236400 114.15190 20624 3.628561          3
## 42    42 1273855 264072   2.497289  86.09446  2106 3.231049          3
## 8      8 1378482 361115   0.000000  56.77208 20824 2.895114          4
## 71    71  977566 198529  43.899720  38.37372  3265 3.856324          2
## 18    18 1704826 394039 239.969800  33.77413  3807 3.994713          5
## 74    74 1782957 518998 171.097200  29.51951 10913 2.319850          3
## 72    72  848140 196772 126.474500  27.44969  3151 3.680586          2
## 69    69 1574290 375393  44.129730  26.75975  5050 3.949484          3
## 22    22 1433440 367036  18.368220  25.95483  8280 4.464360          4
## 1      1 1060294 265014   0.000000  24.80493  7535 2.797888          3
##    PedCount Res Hours24 CrewSkill MgrSkill  ServQual
## 44        4   0       1      4.06 4.172222  86.84327
## 42        2   1       1      3.44 3.656667  98.68839
## 8         3   1       1      3.98 3.800000  78.94776
## 71        1   1       1      3.88 3.466667  79.94253
## 18        3   1       1      3.18 3.866667  97.36939
## 74        4   1       0      3.50 4.405556  94.73878
## 72        1   1       1      3.73 3.416667  73.68654
## 69        3   1       1      3.56 3.940000  92.89294
## 22        3   1       1      3.30 3.973333 100.00000
## 1         3   1       1      3.56 3.150000  86.84327
plot(store.df$Profit,store.df$MTenure,
     main = "Analysis of profit with respect to MTenure ",
     xlab = "Profit of the store",
     ylab = "MTenure of the store")

options(digits=2)
cor(store.df$Profit, store.df$MTenure)
## [1] 0.44
cor(store.df$Profit, store.df$CTenure)
## [1] 0.26
cor.test(store.df[,"Profit"], store.df[,"MTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store.df[, "Profit"] and store.df[, "MTenure"]
## t = 4, df = 70, p-value = 8e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.24 0.61
## sample estimates:
##  cor 
## 0.44
cor.test(store.df[,"Profit"], store.df[,"CTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store.df[, "Profit"] and store.df[, "CTenure"]
## t = 2, df = 70, p-value = 0.03
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.033 0.458
## sample estimates:
##  cor 
## 0.26
options(digits=2)
cor(store.df, use="complete.obs", method="kendall") 
##              store  Sales Profit MTenure CTenure    Pop   Comp Visibility
## store       1.0000 -0.157 -0.141 -0.0105 -0.0062 -0.186 -0.019    -0.0163
## Sales      -0.1575  1.000  0.779  0.2562  0.1387  0.200 -0.179     0.1457
## Profit     -0.1409  0.779  1.000  0.2467  0.1916  0.230 -0.259     0.1403
## MTenure    -0.0105  0.256  0.247  1.0000  0.0965 -0.042  0.121     0.0068
## CTenure    -0.0062  0.139  0.192  0.0965  1.0000 -0.128 -0.107     0.0500
## Pop        -0.1863  0.200  0.230 -0.0424 -0.1279  1.000 -0.113     0.0118
## Comp       -0.0191 -0.179 -0.259  0.1214 -0.1068 -0.113  1.000     0.0670
## Visibility -0.0163  0.146  0.140  0.0068  0.0500  0.012  0.067     1.0000
## PedCount   -0.1378  0.315  0.317 -0.0017 -0.0538  0.461 -0.215    -0.1127
## Res        -0.0258 -0.134 -0.150  0.0442 -0.1013 -0.170  0.186     0.0162
## Hours24     0.0221  0.073  0.023 -0.0882  0.0215 -0.238  0.102     0.0381
## CrewSkill  -0.0319  0.113  0.107  0.1180  0.1675  0.158 -0.046    -0.1783
## MgrSkill   -0.0621  0.175  0.149  0.1873  0.0152  0.033  0.170     0.0059
## ServQual   -0.2278  0.277  0.251  0.1697  0.0578  0.065  0.059     0.1581
##            PedCount    Res Hours24 CrewSkill MgrSkill ServQual
## store       -0.1378 -0.026  0.0221    -0.032  -0.0621   -0.228
## Sales        0.3148 -0.134  0.0732     0.113   0.1755    0.277
## Profit       0.3173 -0.150  0.0235     0.107   0.1495    0.251
## MTenure     -0.0017  0.044 -0.0882     0.118   0.1873    0.170
## CTenure     -0.0538 -0.101  0.0215     0.167   0.0152    0.058
## Pop          0.4606 -0.170 -0.2375     0.158   0.0332    0.065
## Comp        -0.2154  0.186  0.1022    -0.046   0.1704    0.059
## Visibility  -0.1127  0.016  0.0381    -0.178   0.0059    0.158
## PedCount     1.0000 -0.255 -0.2850     0.123   0.0490   -0.054
## Res         -0.2553  1.000 -0.0891    -0.158  -0.0311    0.088
## Hours24     -0.2850 -0.089  1.0000     0.140   0.0042    0.045
## CrewSkill    0.1229 -0.158  0.1395     1.000   0.0501   -0.013
## MgrSkill     0.0490 -0.031  0.0042     0.050   1.0000    0.241
## ServQual    -0.0536  0.088  0.0447    -0.013   0.2407    1.000
library(car)
scatterplotMatrix(store.df[,c("Profit","MTenure","CTenure","Comp","Pop","PedCount")], 
                  spread=FALSE, smoother.args=list(lty=2),
                  main="Scatter Plot Matrix")

library(corrgram)
corrgram(store.df, order=FALSE, 
         lower.panel=panel.shade,
         upper.panel=panel.pie, 
         diag.panel=panel.minmax,
         text.panel=panel.txt,
         main="Corrgram of store.df intercorrelations")

m1 <- lm(Profit ~ 
           MTenure 
         + CTenure 
         + Pop
         + PedCount 
         + Res
         + Visibility
         + Hours24 
         + Comp, 
         data=store.df)
summary(m1)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Pop + PedCount + Res + 
##     Visibility + Hours24 + Comp, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.04   66821.99    0.11  0.90967    
## MTenure        760.99     127.09    5.99  9.7e-08 ***
## CTenure        944.98     421.69    2.24  0.02840 *  
## Pop              3.67       1.47    2.50  0.01489 *  
## PedCount     34087.36    9073.20    3.76  0.00037 ***
## Res          91584.68   39231.28    2.33  0.02262 *  
## Visibility   12625.45    9087.62    1.39  0.16941    
## Hours24      63233.31   19641.11    3.22  0.00199 ** 
## Comp        -25286.89    5491.94   -4.60  1.9e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57000 on 66 degrees of freedom
## Multiple R-squared:  0.638,  Adjusted R-squared:  0.594 
## F-statistic: 14.5 on 8 and 66 DF,  p-value: 5.38e-12
m1$coefficients
## (Intercept)     MTenure     CTenure         Pop    PedCount         Res 
##      7610.0       761.0       945.0         3.7     34087.4     91584.7 
##  Visibility     Hours24        Comp 
##     12625.4     63233.3    -25286.9

List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05). Ctenure, Pop, Pedcount, Res, Visibility, Hours24, Comp List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). Mtenure

Executive Summary * An increase in MTenure by 1 month, increases Profit by $810.97 * An increase in CTenure by 1 month, increases Profit by $1016.02