rats.data <- list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T = 5, 
        Y = structure(
            .Data =   c(151, 199, 246, 283, 320,
                             145, 199, 249, 293, 354,
                             147, 214, 263, 312, 328,
                             155, 200, 237, 272, 297,
                             135, 188, 230, 280, 323,
                             159, 210, 252, 298, 331,
                             141, 189, 231, 275, 305,
                             159, 201, 248, 297, 338,
                             177, 236, 285, 350, 376,
                             134, 182, 220, 260, 296,
                             160, 208, 261, 313, 352,
                             143, 188, 220, 273, 314,
                             154, 200, 244, 289, 325,
                             171, 221, 270, 326, 358,
                             163, 216, 242, 281, 312,
                             160, 207, 248, 288, 324,
                             142, 187, 234, 280, 316,
                             156, 203, 243, 283, 317,
                             157, 212, 259, 307, 336,
                             152, 203, 246, 286, 321,
                             154, 205, 253, 298, 334,
                             139, 190, 225, 267, 302,
                             146, 191, 229, 272, 302,
                             157, 211, 250, 285, 323,
                             132, 185, 237, 286, 331,
                             160, 207, 257, 303, 345,
                             169, 216, 261, 295, 333,
                             157, 205, 248, 289, 316,
                             137, 180, 219, 258, 291,
                             153, 200, 244, 286, 324),
                        .Dim = c(5,30)))

plot(rats.data$x,rats.data$Y[,1],ylim=c(140,370))
  for(i in 1:30){
     points(rats.data$x,rats.data$Y[,i],type="l")}

Y.t <- t(rats.data$Y)

Model with Fixed Effects Only

 model.1 <- "
model
    {
        for( i in 1 : N ) {
            for( j in 1 : T ) {
                Y[i , j] ~ dnorm(mu[i , j],tau.c)
                mu[i , j] <- alpha.c + beta.c * (x[j] - xbar)
            }
        }
        tau.c ~ dgamma(1,1)
        alpha.c ~ dnorm(0.0,1.0E-6)    
         beta.c ~ dnorm(0.0,1.0E-6)
        alpha0 <- alpha.c +beta.c*(8- xbar )
       sigma.c <- 1/tau.c
    }"

rats.data <- list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T = 5, 
        Y = Y.t)

jags.1 <- jags.model(textConnection(model.1),data=rats.data, n.adapt=1500)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 150
##    Unobserved stochastic nodes: 3
##    Total graph size: 181
## 
## Initializing model
test.1 <- coda.samples(jags.1, c('alpha0','beta.c','sigma.c'), n.adapt=1500, n.iter=1000)
   summary(test.1)
## 
## Iterations = 1:1000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 1000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##            Mean        SD Naive SE Time-series SE
## alpha0  156.005    2.9255  0.09251       0.092511
## beta.c    6.191    0.1821  0.00576       0.006052
## sigma.c 328.996 2120.5209 67.05676      67.056758
## 
## 2. Quantiles for each variable:
## 
##            2.5%   25%     50%     75%   97.5%
## alpha0  151.595 154.6 156.112 157.543 160.466
## beta.c    5.937   6.1   6.183   6.276   6.447
## sigma.c 206.381 237.8 258.282 280.474 332.643
   plot(test.1)

   autocorr.plot(test.1)

Model with Random Intercept Only

 model.1 <- "
model
    {
        for( i in 1 : N ) {
            for( j in 1 : T ) {
                Y[i , j] ~ dnorm(mu[i , j],tau.c)
                mu[i , j] <- alpha[i] + beta.c * (x[j] - xbar)
            }
            alpha[i] ~ dnorm(alpha.c,alpha.tau)
        }
        tau.c ~ dgamma(1,1)
        alpha.c ~ dnorm(0.0,1.0E-6)    
        alpha.tau ~ dgamma(1,1)
        beta.c ~ dnorm(0.0,1.0E-6)
        alpha.0 <- alpha.c +beta.c*(8- xbar )
       sigma.c <- 1/tau.c
       sigma.alpha <- 1/alpha.tau
    }"

rats.data <- list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T = 5, 
        Y = Y.t)

jags.1 <- jags.model(textConnection(model.1),data=rats.data, n.adapt=1500)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 150
##    Unobserved stochastic nodes: 34
##    Total graph size: 359
## 
## Initializing model
test.1 <- coda.samples(jags.1, c('alpha.0','beta.c','alpha','sigma.c','sigma.alpha'), n.adapt=1500, n.iter=10000)
   summary(test.1)
## 
## Iterations = 1:10000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean      SD Naive SE Time-series SE
## alpha[1]    239.961  3.6612 0.036612      0.0389688
## alpha[2]    247.604  3.6560 0.036560      0.0393994
## alpha[3]    252.068  3.6115 0.036115      0.0385306
## alpha[4]    232.931  3.6244 0.036244      0.0381590
## alpha[5]    231.948  3.5598 0.035598      0.0361369
## alpha[6]    249.507  3.6677 0.036677      0.0409042
## alpha[7]    229.192  3.5818 0.035818      0.0369421
## alpha[8]    248.227  3.6135 0.036135      0.0384150
## alpha[9]    281.840  3.8366 0.038366      0.0488233
## alpha[10]   220.089  3.6260 0.036260      0.0382045
## alpha[11]   257.718  3.6296 0.036296      0.0424008
## alpha[12]   228.763  3.5947 0.035947      0.0373002
## alpha[13]   242.420  3.6066 0.036066      0.0390420
## alpha[14]   267.357  3.7402 0.037402      0.0443182
## alpha[15]   242.711  3.6165 0.036165      0.0373019
## alpha[16]   245.217  3.5871 0.035871      0.0369102
## alpha[17]   232.580  3.6348 0.036348      0.0384003
## alpha[18]   240.594  3.6154 0.036154      0.0367471
## alpha[19]   253.340  3.6521 0.036521      0.0410524
## alpha[20]   241.651  3.6133 0.036133      0.0379880
## alpha[21]   248.355  3.6248 0.036248      0.0395676
## alpha[22]   225.905  3.5655 0.035655      0.0363322
## alpha[23]   228.992  3.5922 0.035922      0.0366401
## alpha[24]   244.986  3.5901 0.035901      0.0369641
## alpha[25]   234.769  3.6564 0.036564      0.0386407
## alpha[26]   253.526  3.6265 0.036265      0.0391739
## alpha[27]   253.973  3.6401 0.036401      0.0377402
## alpha[28]   242.919  3.6281 0.036281      0.0389186
## alpha[29]   218.822  3.6158 0.036158      0.0377267
## alpha[30]   241.502  3.5722 0.035722      0.0387127
## alpha.0     156.117  2.8620 0.028620      0.0332475
## beta.c        6.184  0.0684 0.000684      0.0006998
## sigma.alpha 194.524 56.9183 0.569183      0.6613603
## sigma.c      68.400 65.2107 0.652107      1.0162861
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%    75%   97.5%
## alpha[1]    232.863 237.538 239.973 242.39 247.087
## alpha[2]    240.606 245.250 247.596 250.01 254.695
## alpha[3]    245.121 249.719 252.042 254.45 259.058
## alpha[4]    225.927 230.488 232.964 235.32 239.899
## alpha[5]    225.018 229.556 232.021 234.31 238.721
## alpha[6]    242.534 247.153 249.529 251.89 256.435
## alpha[7]    222.247 226.809 229.168 231.54 236.345
## alpha[8]    241.245 245.816 248.231 250.61 255.261
## alpha[9]    274.570 279.443 281.887 284.33 288.974
## alpha[10]   213.062 217.652 220.102 222.50 227.223
## alpha[11]   250.776 255.360 257.741 260.10 264.826
## alpha[12]   221.747 226.402 228.780 231.15 235.676
## alpha[13]   235.440 240.043 242.429 244.77 249.342
## alpha[14]   260.189 264.993 267.414 269.81 274.363
## alpha[15]   235.757 240.324 242.716 245.16 249.571
## alpha[16]   238.282 242.869 245.210 247.60 252.194
## alpha[17]   225.723 230.108 232.548 235.01 239.668
## alpha[18]   233.515 238.258 240.628 242.97 247.646
## alpha[19]   246.339 250.992 253.382 255.76 260.314
## alpha[20]   234.773 239.261 241.676 244.06 248.610
## alpha[21]   241.409 245.984 248.400 250.76 255.214
## alpha[22]   218.943 223.541 225.917 228.30 232.870
## alpha[23]   222.098 226.625 229.043 231.37 235.908
## alpha[24]   238.011 242.648 244.987 247.33 252.035
## alpha[25]   227.787 232.339 234.761 237.17 241.950
## alpha[26]   246.686 251.153 253.507 255.93 260.638
## alpha[27]   246.979 251.560 254.029 256.32 261.091
## alpha[28]   236.041 240.478 242.936 245.33 249.895
## alpha[29]   211.932 216.395 218.814 221.23 225.975
## alpha[30]   234.622 239.180 241.538 243.83 248.348
## alpha.0     150.595 154.263 156.135 157.97 161.602
## beta.c        6.047   6.138   6.183   6.23   6.317
## sigma.alpha 110.676 154.056 185.459 224.59 332.566
## sigma.c      52.532  61.189  66.570  72.86  87.246
   plot(test.1)

   autocorr.plot(test.1)

    summary(test.1[,31:34])
## 
## Iterations = 1:10000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                Mean      SD Naive SE Time-series SE
## alpha.0     156.117  2.8620 0.028620      0.0332475
## beta.c        6.184  0.0684 0.000684      0.0006998
## sigma.alpha 194.524 56.9183 0.569183      0.6613603
## sigma.c      68.400 65.2107 0.652107      1.0162861
## 
## 2. Quantiles for each variable:
## 
##                2.5%     25%     50%    75%   97.5%
## alpha.0     150.595 154.263 156.135 157.97 161.602
## beta.c        6.047   6.138   6.183   6.23   6.317
## sigma.alpha 110.676 154.056 185.459 224.59 332.566
## sigma.c      52.532  61.189  66.570  72.86  87.246
     out <- as.matrix(test.1)
    boxplot(out[,1:30], las=2)

jags.1 <- jags.model(textConnection(model.1),data=rats.data, n.adapt=1500, n.chains=2)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 150
##    Unobserved stochastic nodes: 34
##    Total graph size: 359
## 
## Initializing model
dic.1 <- dic.samples(jags.1,n.iter=1000)

Model with Random Intercept and Slope

 model.1 <- "
model
    {
        for( i in 1 : N ) {
            for( j in 1 : T ) {
                Y[i , j] ~ dnorm(mu[i , j],tau.c)
                mu[i , j] <- alpha[i] + beta[i] * (x[j] - xbar)
            }
            alpha[i] ~ dnorm(alpha.c,alpha.tau)
            beta[i] ~ dnorm(beta.c,beta.tau)
        }
        tau.c ~ dgamma(1,1)
        alpha.c ~ dnorm(0.0,1.0E-6)    
        alpha.tau ~ dgamma(1,1)
        beta.c ~ dnorm(0.0,1.0E-6)
        beta.tau ~ dgamma(1,1)
        alpha.0 <- alpha.c +beta.c*(8- xbar )
       sigma.c <- 1/tau.c
       sigma.alpha <- 1/alpha.tau
       sigma.beta <- 1/beta.tau

    }"


jags.1 <- jags.model(textConnection(model.1),data=rats.data, n.adapt=1500)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 150
##    Unobserved stochastic nodes: 65
##    Total graph size: 537
## 
## Initializing model
test.1 <- coda.samples(jags.1, c('alpha.0','beta.c','alpha','beta','sigma.c','sigma.alpha','sigma.beta'), n.adapt=1500, n.iter=10000)
   summary(test.1)
## 
## Iterations = 1:10000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                 Mean      SD Naive SE Time-series SE
## alpha[1]    239.8866  2.6875 0.026875       0.028058
## alpha[2]    247.7837  2.6818 0.026818       0.030910
## alpha[3]    252.3672  2.7051 0.027051       0.030225
## alpha[4]    232.5256  2.7065 0.027065       0.028179
## alpha[5]    231.6609  2.6723 0.026723       0.026723
## alpha[6]    249.7254  2.7024 0.027024       0.029075
## alpha[7]    228.7422  2.6799 0.026799       0.027359
## alpha[8]    248.3846  2.7146 0.027146       0.029563
## alpha[9]    283.2671  2.8915 0.028915       0.036844
## alpha[10]   219.2992  2.6610 0.026610       0.027216
## alpha[11]   258.2336  2.7376 0.027376       0.030502
## alpha[12]   228.1215  2.6656 0.026656       0.026370
## alpha[13]   242.4024  2.6994 0.026994       0.028920
## alpha[14]   268.1995  2.7536 0.027536       0.032301
## alpha[15]   242.7884  2.6820 0.026820       0.028889
## alpha[16]   245.2910  2.6524 0.026524       0.028613
## alpha[17]   232.1810  2.7062 0.027062       0.027920
## alpha[18]   240.4636  2.6973 0.026973       0.028792
## alpha[19]   253.7723  2.7144 0.027144       0.029840
## alpha[20]   241.6779  2.7030 0.027030       0.028297
## alpha[21]   248.5555  2.7395 0.027395       0.028475
## alpha[22]   225.2230  2.6854 0.026854       0.027524
## alpha[23]   228.5783  2.6995 0.026995       0.029292
## alpha[24]   245.0907  2.6803 0.026803       0.027628
## alpha[25]   234.5021  2.6714 0.026714       0.026714
## alpha[26]   253.9892  2.7474 0.027474       0.032002
## alpha[27]   254.3537  2.7531 0.027531       0.030069
## alpha[28]   243.0199  2.7285 0.027285       0.026647
## alpha[29]   217.9602  2.6689 0.026689       0.028009
## alpha[30]   241.4257  2.6686 0.026686       0.026686
## alpha.0     156.1013  3.1464 0.031464       0.034229
## beta[1]       6.0534  0.2471 0.002471       0.002471
## beta[2]       7.1063  0.2509 0.002509       0.002763
## beta[3]       6.5008  0.2447 0.002447       0.002486
## beta[4]       5.2859  0.2568 0.002568       0.002692
## beta[5]       6.5971  0.2467 0.002467       0.002559
## beta[6]       6.1730  0.2438 0.002438       0.002438
## beta[7]       5.9664  0.2429 0.002429       0.002429
## beta[8]       6.4332  0.2501 0.002501       0.002510
## beta[9]       7.1063  0.2545 0.002545       0.002708
## beta[10]      5.8255  0.2457 0.002457       0.002457
## beta[11]      6.8365  0.2493 0.002493       0.002606
## beta[12]      6.1195  0.2426 0.002426       0.002426
## beta[13]      6.1605  0.2463 0.002463       0.002463
## beta[14]      6.7220  0.2493 0.002493       0.002645
## beta[15]      5.3672  0.2510 0.002510       0.002616
## beta[16]      5.9044  0.2460 0.002460       0.002460
## beta[17]      6.2768  0.2470 0.002470       0.002470
## beta[18]      5.8193  0.2462 0.002462       0.002462
## beta[19]      6.4202  0.2457 0.002457       0.002457
## beta[20]      6.0406  0.2465 0.002465       0.002465
## beta[21]      6.4183  0.2450 0.002450       0.002450
## beta[22]      5.8312  0.2471 0.002471       0.002471
## beta[23]      5.7188  0.2473 0.002473       0.002546
## beta[24]      5.8692  0.2454 0.002454       0.002454
## beta[25]      6.9546  0.2498 0.002498       0.002593
## beta[26]      6.5732  0.2440 0.002440       0.002440
## beta[27]      5.8759  0.2456 0.002456       0.002518
## beta[28]      5.8190  0.2460 0.002460       0.002460
## beta[29]      5.6367  0.2484 0.002484       0.002569
## beta[30]      6.1230  0.2473 0.002473       0.002519
## beta.c        6.1843  0.1203 0.001203       0.001348
## sigma.alpha 203.1896 57.4159 0.574159       0.634742
## sigma.beta    0.3552  0.1121 0.001121       0.001493
## sigma.c      36.3713 22.8537 0.228537       0.410276
## 
## 2. Quantiles for each variable:
## 
##                 2.5%      25%      50%      75%    97.5%
## alpha[1]    234.6347 238.1076 239.8816 241.6736 245.1479
## alpha[2]    242.6810 246.0131 247.7714 249.5333 252.9557
## alpha[3]    247.2100 250.6356 252.3735 254.1506 257.5855
## alpha[4]    227.2313 230.8042 232.5432 234.3098 237.7223
## alpha[5]    226.5473 229.9038 231.6631 233.4364 236.8658
## alpha[6]    244.6322 247.9754 249.7451 251.4778 254.9018
## alpha[7]    223.5822 226.9360 228.7678 230.5130 233.9122
## alpha[8]    243.0937 246.6370 248.3880 250.1253 253.6200
## alpha[9]    277.9569 281.5317 283.3546 285.1175 288.3453
## alpha[10]   214.1414 217.5431 219.2844 221.0398 224.5162
## alpha[11]   252.9425 256.4861 258.2681 260.0044 263.4716
## alpha[12]   222.9748 226.3641 228.1094 229.8749 233.3113
## alpha[13]   237.2123 240.6345 242.4421 244.1392 247.6284
## alpha[14]   262.9217 266.4717 268.2221 269.9641 273.2944
## alpha[15]   237.6208 241.0565 242.8004 244.5587 248.0070
## alpha[16]   240.2629 243.5614 245.2911 247.0634 250.3627
## alpha[17]   226.9913 230.3781 232.2076 233.9835 237.4504
## alpha[18]   235.3239 238.7002 240.4946 242.2248 245.6264
## alpha[19]   248.5562 252.0516 253.7918 255.5799 258.8685
## alpha[20]   236.5701 239.9194 241.6843 243.4551 246.7753
## alpha[21]   243.4290 246.7619 248.5943 250.3626 253.7396
## alpha[22]   220.1420 223.4251 225.1937 227.0424 230.4085
## alpha[23]   223.4440 226.7896 228.5346 230.3608 233.8842
## alpha[24]   239.9197 243.3475 245.0891 246.8784 250.2287
## alpha[25]   229.3097 232.7362 234.5009 236.2538 239.7416
## alpha[26]   248.7932 252.2191 253.9794 255.7931 259.1378
## alpha[27]   249.0730 252.5731 254.3651 256.1707 259.6461
## alpha[28]   237.8499 241.2614 243.0299 244.7842 248.2807
## alpha[29]   212.7666 216.2048 217.9556 219.7217 223.1279
## alpha[30]   236.3662 239.6315 241.4019 243.2235 246.5962
## alpha.0     150.0088 154.0286 156.1048 158.1517 162.2941
## beta[1]       5.5755   5.8840   6.0501   6.2187   6.5436
## beta[2]       6.6084   6.9406   7.1031   7.2755   7.5916
## beta[3]       6.0192   6.3360   6.5030   6.6618   6.9759
## beta[4]       4.7879   5.1107   5.2877   5.4595   5.7893
## beta[5]       6.1165   6.4313   6.5978   6.7620   7.0792
## beta[6]       5.6890   6.0090   6.1740   6.3357   6.6520
## beta[7]       5.4878   5.8047   5.9648   6.1293   6.4481
## beta[8]       5.9401   6.2687   6.4340   6.5971   6.9271
## beta[9]       6.6064   6.9400   7.1081   7.2750   7.6117
## beta[10]      5.3415   5.6600   5.8267   5.9901   6.3090
## beta[11]      6.3463   6.6697   6.8366   7.0024   7.3264
## beta[12]      5.6430   5.9567   6.1191   6.2807   6.5968
## beta[13]      5.6809   5.9945   6.1603   6.3274   6.6407
## beta[14]      6.2300   6.5575   6.7248   6.8905   7.2099
## beta[15]      4.8760   5.2005   5.3636   5.5324   5.8603
## beta[16]      5.4140   5.7383   5.9058   6.0672   6.3905
## beta[17]      5.7854   6.1120   6.2791   6.4385   6.7677
## beta[18]      5.3283   5.6538   5.8236   5.9848   6.2956
## beta[19]      5.9417   6.2545   6.4199   6.5881   6.8964
## beta[20]      5.5635   5.8789   6.0407   6.2051   6.5223
## beta[21]      5.9393   6.2548   6.4180   6.5815   6.9019
## beta[22]      5.3477   5.6647   5.8322   5.9975   6.3135
## beta[23]      5.2360   5.5542   5.7218   5.8777   6.2109
## beta[24]      5.3861   5.7037   5.8679   6.0323   6.3563
## beta[25]      6.4695   6.7863   6.9538   7.1214   7.4487
## beta[26]      6.0998   6.4087   6.5767   6.7396   7.0476
## beta[27]      5.3947   5.7112   5.8764   6.0387   6.3533
## beta[28]      5.3336   5.6558   5.8192   5.9829   6.3004
## beta[29]      5.1554   5.4697   5.6357   5.8024   6.1295
## beta[30]      5.6449   5.9560   6.1222   6.2890   6.6128
## beta.c        5.9481   6.1045   6.1847   6.2646   6.4211
## sigma.alpha 118.0646 162.6187 194.3456 233.9347 342.4947
## sigma.beta    0.1907   0.2751   0.3376   0.4147   0.6224
## sigma.c      27.0167  32.1527  35.4453  39.2058  47.5467
   plot(test.1)

   autocorr.plot(test.1)

   summary(test.1[,c(31, 62:65)])
## 
## Iterations = 1:10000
## Thinning interval = 1 
## Number of chains = 1 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                 Mean      SD Naive SE Time-series SE
## alpha.0     156.1013  3.1464 0.031464       0.034229
## beta.c        6.1843  0.1203 0.001203       0.001348
## sigma.alpha 203.1896 57.4159 0.574159       0.634742
## sigma.beta    0.3552  0.1121 0.001121       0.001493
## sigma.c      36.3713 22.8537 0.228537       0.410276
## 
## 2. Quantiles for each variable:
## 
##                 2.5%      25%      50%      75%    97.5%
## alpha.0     150.0088 154.0286 156.1048 158.1517 162.2941
## beta.c        5.9481   6.1045   6.1847   6.2646   6.4211
## sigma.alpha 118.0646 162.6187 194.3456 233.9347 342.4947
## sigma.beta    0.1907   0.2751   0.3376   0.4147   0.6224
## sigma.c      27.0167  32.1527  35.4453  39.2058  47.5467
   out <- as.matrix(test.1)
    boxplot(out[,1:30], las=2)

     boxplot(out[,32:61], las=2)

     jags.1 <- jags.model(textConnection(model.1),data=rats.data, n.adapt=1500, n.chains=2)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 150
##    Unobserved stochastic nodes: 65
##    Total graph size: 537
## 
## Initializing model
dic.2 <- dic.samples(jags.1,n.iter=1000)
diffdic(dic.1,dic.2)
## Difference: 68.93575
## Sample standard error: 12.27836