Page 419 C22

Consider the matrix A below. Find the eigenvalues of A using a calculator and use these to construct the characteristic polynomial of A, pA (x). State the algebraic multiplicity of each eigenvalue. Find all of the eigenspaces for A by computing expressions for null spaces, only using your calculator to row-reduce matrices. State the geometric multiplicity of each eigenvalue. Is A diagonalizable? If not, explain why. If so, find a diagonal matrix D that is similar to A.

library(pracma)
## Warning: package 'pracma' was built under R version 3.4.3
A <- matrix(c(19,-23,7,-3,25,-30,9,-4,30,-35,10,-5,5,-5,1,-1), ncol = 4)
A
##      [,1] [,2] [,3] [,4]
## [1,]   19   25   30    5
## [2,]  -23  -30  -35   -5
## [3,]    7    9   10    1
## [4,]   -3   -4   -5   -1
eigen(A)
## eigen() decomposition
## $values
## [1] -1.000000e+00 -1.000000e+00 -3.907985e-14 -6.416384e-16
## 
## $vectors
##            [,1]        [,2]        [,3]         [,4]
## [1,]  0.6812872 -0.61709131  0.63660701 -0.705670095
## [2,] -0.7033974  0.74700527 -0.73209807  0.696145134
## [3,]  0.1539456 -0.22734943  0.22281245 -0.131609058
## [4,] -0.1318354  0.09743547 -0.09549105 -0.009524962
I4 <- diag(4)

n1 <- nullspace(A + I4)

n0 <- nullspace(A)

S <- cbind(n1, n0)
S
##            [,1]        [,2]       [,3]       [,4]
## [1,] -0.4197166 -0.75752094 -0.7696914 -0.2204557
## [2,] -0.5349477  0.62642025  0.3028420  0.6873058
## [3,]  0.6797882 -0.04662364  0.3129112 -0.5109412
## [4,]  0.2748762  0.17772432 -0.4668495  0.4668501
D <- solve(S) %*% A %*% S
round(D, 3)
##      [,1] [,2] [,3] [,4]
## [1,]   -1    0    0    0
## [2,]    0   -1    0    0
## [3,]    0    0    0    0
## [4,]    0    0    0    0
A1 <- S %*% D %*% solve(S)
round(A1)
##      [,1] [,2] [,3] [,4]
## [1,]   19   25   30    5
## [2,]  -23  -30  -35   -5
## [3,]    7    9   10    1
## [4,]   -3   -4   -5   -1

We see that A is also similar to D

The geometric and algebraic multiplicities of the eigenvalues 0, -1 are 2 and 2, respectively.

This matrix is daigonalizable because it forms a basis for C4, the dimension of the original matrix. (However it is not orthongonlly diagonalizable ;)