Problem T10 page 402
Question
Solution
\(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\)
If \(\lambda\) is an eigen value of A the the characteristic polynomial is as follows:
\(det\begin{Bmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 0 \end{Bmatrix}\)
\(det\begin{Bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 0 \end{Bmatrix}\)
\(det \begin{bmatrix} \lambda - a & - b \\ -c & \lambda - d \end{bmatrix} = 0\)
This simplifies to:
\((\lambda - a)(\lambda - d) - (-b)(-c)\)
\(\lambda^2 - \lambda a - \lambda d + ad - bc\)
The the constant term is ad - bc
The determinant of a square matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is ad - bc