Eigenvalues Chapter p. 388 C23t Find the eigenvalues, eigenspaces, algebraic and geometric multiplicities for
\[A = \begin{pmatrix}1\:&\:1\\1\:&1\end{pmatrix}\]
To find eigenvalues, solve the following equation: det(\(\lambda\)\(I_n\)-A) = 0
\[det(\begin{pmatrix}\lambda\:&\:0\:\\0\:&\lambda\end{pmatrix} - \begin{pmatrix}1\:&\:1\\1\:&1\end{pmatrix})=0\]
\[det\begin{pmatrix}\lambda-1&-1\\-1\:&\:\lambda-1\end{pmatrix}=0\]
(\(\lambda\)-1)(\(\lambda\)-1)-1 = 0
\(\lambda\)\(^2\) - 2\(\lambda\) = 0
\(\lambda\) = 0 or \(\lambda\) = 2 <- eigenvalues
Substitute in the eigenvalue = 0 to find the eigenvectors: \[ \begin{pmatrix}-1\:&\:-1\\-1\:&-1\end{pmatrix}\] Put the matrix in reduced row eschelon form \[ \begin{pmatrix}1\:&\:1\\0\:&0\end{pmatrix}\] \(v_1\) + \(v_2\) = 0
\(v_1\) = -\(v_2\)
eigenspace = span\[\begin{pmatrix}1\\-1\end{pmatrix}\]
algebraic and geometric multiplicities = 1
Substitute in the eigenvalue = 2 to find the eigenvectors: \[ \begin{pmatrix}1\:&\:-1\\-1\:&1\end{pmatrix}\] Put the matrix in reduced row eschelon form \[ \begin{pmatrix}1\:&\:-1\\0\:&0\end{pmatrix}\] \(v_1\) - \(v_2\) = 0
\(v_1\) = \(v_2\)
eigenspace = span\[\begin{pmatrix}1\\1\end{pmatrix}\]
algebraic and geometric multiplicities = 1
A <- matrix(c(1,1,1,1),2,2)
A
## [,1] [,2]
## [1,] 1 1
## [2,] 1 1
eigen(A)
## eigen() decomposition
## $values
## [1] 2 0
##
## $vectors
## [,1] [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068
When R calculated the eigenvectors, it used the convention that the length should equal 1. The values I calculated are equivalent to this.