What are the Religious Population Proportions in each State in the United States?

Loading needed Libraries and Data

library(readr)
library(dplyr)
library(ggplot2)
ReligionData <- read_csv("/Users/Deepakie/Documents/Queens College/SOC712/Data/Religion 2010.csv")

Previewing Data

head(ReligionData)

Renaming Variables

ReligionData2<- rename(ReligionData, 
       "Statename"= Geo_Name,
       "TotalPopulation" = RCMS10_T001_001, 
       "PercentReligious" = RCMS10_NV009_001)

Selecting Variables to Keep

ReligionData2<- select(ReligionData2,
                       Statename, TotalPopulation, PercentReligious)

Creating New Variable

ReligionData2<- mutate(ReligionData2,
ReligiousPopulation = TotalPopulation * (PercentReligious/100))

Using one script to Run all commands togther

ReligionData3<- ReligionData%>%
  rename("Statename"= Geo_Name,
       "TotalPopulation" = RCMS10_T001_001, 
       "PercentReligious" = RCMS10_NV009_001)%>%
  select(Statename, 
         TotalPopulation, 
         PercentReligious)%>%
  mutate(ReligiousPopulation = TotalPopulation * (PercentReligious/100))

Looking at Edited Data

head(ReligionData3)

Plot Bar Chart of Percent Religious for each state

Which States have religious population of 50% or more?

Plot of Reglious States > 50

ReligionData4<- ReligionData3%>%
  filter(PercentReligious>50)
ggplot(data=ReligionData4)+
  geom_col(aes(x=Statename,y=PercentReligious))+
  coord_flip()

Which States have religious population of 50% or less?

Plot of Reglious States < 50

ReligionData5<- ReligionData3%>%
  filter(PercentReligious<50)
ggplot(data=ReligionData5)+
  geom_col(aes(x=Statename,y=PercentReligious))+
  coord_flip()

Summary

First I extracted and downladed the data set from https://www.socialexplorer.com, once the data is imported into R studio, i load the needed packages for this assignment. I thought it would be interesting to analyze the religious percentages in eaach state. To do so, I renamed the variables Geo_Name ,RCMS10_T001_001 and RCMS10_NV009_001 according and dropped the other variables. To have the total population number of those who are religious in each state, we created a new varaible named - ReligiousPopulation. Once I had the data set as I wanted it, i previewed it before I ploted a bar graph. The bar graph shows the religious percentage per state where X = state Name and Y= Percent Religious.Furthermore, I wanted to see which states are more reglious than others so I ploted two different bar graphs showing those which have a higher percentage than 50 of religious population and those who have lower percentage than 50 of religious population. We can see some states that have the higher percentages of religious population are Utah, North Dakota, Alabama, Louisana, etc. Maine, Oregon, Alaska, Washington, etc are of those which some of the lowest religious populations.
LS0tCnRpdGxlOiAiSG9tZXdvcmsgQXNzaWdubWVudCAyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCipXaGF0IGFyZSB0aGUgUmVsaWdpb3VzIFBvcHVsYXRpb24gUHJvcG9ydGlvbnMgaW4gZWFjaCBTdGF0ZSBpbiB0aGUgVW5pdGVkIFN0YXRlcz8qCgoqKkxvYWRpbmcgbmVlZGVkIExpYnJhcmllcyBhbmQgRGF0YSoqCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkocmVhZHIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dwbG90MikKUmVsaWdpb25EYXRhIDwtIHJlYWRfY3N2KCIvVXNlcnMvRGVlcGFraWUvRG9jdW1lbnRzL1F1ZWVucyBDb2xsZWdlL1NPQzcxMi9EYXRhL1JlbGlnaW9uIDIwMTAuY3N2IikKYGBgCioqUHJldmlld2luZyBEYXRhKioKYGBge3J9CmhlYWQoUmVsaWdpb25EYXRhKQpgYGAKKipSZW5hbWluZyBWYXJpYWJsZXMqKgpgYGB7cn0KUmVsaWdpb25EYXRhMjwtIHJlbmFtZShSZWxpZ2lvbkRhdGEsIAogICAgICAgIlN0YXRlbmFtZSI9IEdlb19OYW1lLAogICAgICAgIlRvdGFsUG9wdWxhdGlvbiIgPSBSQ01TMTBfVDAwMV8wMDEsIAogICAgICAgIlBlcmNlbnRSZWxpZ2lvdXMiID0gUkNNUzEwX05WMDA5XzAwMSkKYGBgCioqU2VsZWN0aW5nIFZhcmlhYmxlcyB0byBLZWVwKioKCiAqIFN0YXRlIE5hbWUKICogVG90YWwgUG9wdWxhdGlvbgogKiBQZXJjZW50IFJlbGlnaW91cwogCmBgYHtyfQpSZWxpZ2lvbkRhdGEyPC0gc2VsZWN0KFJlbGlnaW9uRGF0YTIsCiAgICAgICAgICAgICAgICAgICAgICAgU3RhdGVuYW1lLCBUb3RhbFBvcHVsYXRpb24sIFBlcmNlbnRSZWxpZ2lvdXMpCmBgYAoqKkNyZWF0aW5nIE5ldyBWYXJpYWJsZSoqCgogKiBUb3RhbCBSZWxpZ2lvdXMgUG9wdWxhdGlvbgpgYGB7cn0KUmVsaWdpb25EYXRhMjwtIG11dGF0ZShSZWxpZ2lvbkRhdGEyLApSZWxpZ2lvdXNQb3B1bGF0aW9uID0gVG90YWxQb3B1bGF0aW9uICogKFBlcmNlbnRSZWxpZ2lvdXMvMTAwKSkKYGBgCioqVXNpbmcgb25lIHNjcmlwdCB0byBSdW4gYWxsIGNvbW1hbmRzIHRvZ3RoZXIqKgpgYGB7cn0KUmVsaWdpb25EYXRhMzwtIFJlbGlnaW9uRGF0YSU+JQogIHJlbmFtZSgiU3RhdGVuYW1lIj0gR2VvX05hbWUsCiAgICAgICAiVG90YWxQb3B1bGF0aW9uIiA9IFJDTVMxMF9UMDAxXzAwMSwgCiAgICAgICAiUGVyY2VudFJlbGlnaW91cyIgPSBSQ01TMTBfTlYwMDlfMDAxKSU+JQogIHNlbGVjdChTdGF0ZW5hbWUsIAogICAgICAgICBUb3RhbFBvcHVsYXRpb24sIAogICAgICAgICBQZXJjZW50UmVsaWdpb3VzKSU+JQogIG11dGF0ZShSZWxpZ2lvdXNQb3B1bGF0aW9uID0gVG90YWxQb3B1bGF0aW9uICogKFBlcmNlbnRSZWxpZ2lvdXMvMTAwKSkKYGBgCioqTG9va2luZyBhdCBFZGl0ZWQgRGF0YSoqCmBgYHtyfQpoZWFkKFJlbGlnaW9uRGF0YTMpCmBgYAoqKlBsb3QgQmFyIENoYXJ0IG9mIFBlcmNlbnQgUmVsaWdpb3VzIGZvciBlYWNoIHN0YXRlKioKYGBge3IgZmlnLmhlaWdodD03LCBmaWcud2lkdGg9NH0KZ2dwbG90KGRhdGE9UmVsaWdpb25EYXRhMykrCiAgZ2VvbV9jb2woYWVzKHg9U3RhdGVuYW1lLHk9UGVyY2VudFJlbGlnaW91cykpKwogIGNvb3JkX2ZsaXAoKQpgYGAKCipXaGljaCBTdGF0ZXMgaGF2ZSByZWxpZ2lvdXMgcG9wdWxhdGlvbiBvZiA1MCUgb3IgbW9yZT8qCgoqKlBsb3Qgb2YgUmVnbGlvdXMgU3RhdGVzID4gNTAqKgpgYGB7cn0KUmVsaWdpb25EYXRhNDwtIFJlbGlnaW9uRGF0YTMlPiUKICBmaWx0ZXIoUGVyY2VudFJlbGlnaW91cz41MCkKCgpnZ3Bsb3QoZGF0YT1SZWxpZ2lvbkRhdGE0KSsKICBnZW9tX2NvbChhZXMoeD1TdGF0ZW5hbWUseT1QZXJjZW50UmVsaWdpb3VzKSkrCiAgY29vcmRfZmxpcCgpCgpgYGAKCipXaGljaCBTdGF0ZXMgaGF2ZSByZWxpZ2lvdXMgcG9wdWxhdGlvbiBvZiA1MCUgb3IgbGVzcz8qCgoqKlBsb3Qgb2YgUmVnbGlvdXMgU3RhdGVzIDwgNTAqKgpgYGB7cn0KUmVsaWdpb25EYXRhNTwtIFJlbGlnaW9uRGF0YTMlPiUKICBmaWx0ZXIoUGVyY2VudFJlbGlnaW91czw1MCkKCgpnZ3Bsb3QoZGF0YT1SZWxpZ2lvbkRhdGE1KSsKICBnZW9tX2NvbChhZXMoeD1TdGF0ZW5hbWUseT1QZXJjZW50UmVsaWdpb3VzKSkrCiAgY29vcmRfZmxpcCgpCgpgYGAKCioqU3VtbWFyeSoqCgojIyMjIyMgRmlyc3QgSSBleHRyYWN0ZWQgYW5kIGRvd25sYWRlZCB0aGUgZGF0YSBzZXQgZnJvbSBodHRwczovL3d3dy5zb2NpYWxleHBsb3Jlci5jb20sIG9uY2UgdGhlIGRhdGEgaXMgaW1wb3J0ZWQgaW50byBSIHN0dWRpbywgaSBsb2FkIHRoZSBuZWVkZWQgcGFja2FnZXMgZm9yIHRoaXMgYXNzaWdubWVudC4gSSB0aG91Z2h0IGl0IHdvdWxkIGJlIGludGVyZXN0aW5nIHRvIGFuYWx5emUgdGhlIHJlbGlnaW91cyBwZXJjZW50YWdlcyBpbiBlYWFjaCBzdGF0ZS4gVG8gZG8gc28sIEkgcmVuYW1lZCB0aGUgdmFyaWFibGVzIEdlb19OYW1lICxSQ01TMTBfVDAwMV8wMDEgYW5kIFJDTVMxMF9OVjAwOV8wMDEgYWNjb3JkaW5nIGFuZCBkcm9wcGVkIHRoZSBvdGhlciB2YXJpYWJsZXMuIFRvIGhhdmUgdGhlIHRvdGFsIHBvcHVsYXRpb24gbnVtYmVyIG9mIHRob3NlIHdobyBhcmUgcmVsaWdpb3VzIGluIGVhY2ggc3RhdGUsIHdlIGNyZWF0ZWQgYSBuZXcgdmFyYWlibGUgbmFtZWQgLSBSZWxpZ2lvdXNQb3B1bGF0aW9uLiBPbmNlIEkgaGFkIHRoZSBkYXRhIHNldCBhcyBJIHdhbnRlZCBpdCwgaSBwcmV2aWV3ZWQgaXQgYmVmb3JlIEkgcGxvdGVkIGEgYmFyIGdyYXBoLiBUaGUgYmFyIGdyYXBoIHNob3dzIHRoZSByZWxpZ2lvdXMgcGVyY2VudGFnZSBwZXIgc3RhdGUgd2hlcmUgWCA9IHN0YXRlIE5hbWUgYW5kIFk9IFBlcmNlbnQgUmVsaWdpb3VzLkZ1cnRoZXJtb3JlLCBJIHdhbnRlZCB0byBzZWUgd2hpY2ggc3RhdGVzIGFyZSBtb3JlIHJlZ2xpb3VzIHRoYW4gb3RoZXJzIHNvIEkgcGxvdGVkIHR3byBkaWZmZXJlbnQgYmFyIGdyYXBocyBzaG93aW5nIHRob3NlIHdoaWNoIGhhdmUgYSBoaWdoZXIgcGVyY2VudGFnZSB0aGFuIDUwIG9mIHJlbGlnaW91cyBwb3B1bGF0aW9uIGFuZCB0aG9zZSB3aG8gaGF2ZSBsb3dlciBwZXJjZW50YWdlIHRoYW4gNTAgb2YgcmVsaWdpb3VzIHBvcHVsYXRpb24uIFdlIGNhbiBzZWUgc29tZSBzdGF0ZXMgdGhhdCBoYXZlIHRoZSBoaWdoZXIgcGVyY2VudGFnZXMgb2YgcmVsaWdpb3VzIHBvcHVsYXRpb24gYXJlIFV0YWgsIE5vcnRoIERha290YSwgQWxhYmFtYSwgTG91aXNhbmEsIGV0Yy4gTWFpbmUsIE9yZWdvbiwgQWxhc2thLCBXYXNoaW5ndG9uLCBldGMgYXJlIG9mIHRob3NlIHdoaWNoIHNvbWUgb2YgdGhlIGxvd2VzdCByZWxpZ2lvdXMgcG9wdWxhdGlvbnMuCgo=