I have been asked about problems with the code from the Lattice Graphs from Quick-R

Start by reloading the original mtcars dataset. If the mtcars is not reloaded any previous changes will cause problems with the code.

data(mtcars)
library(lattice)

create factors with value labels

gear.f<-factor(gear,levels=c(3,4,5),
               labels=c("3gears","4gears","5gears"))
cyl.f <-factor(cyl,levels=c(4,6,8),
               labels=c("4cyl","6cyl","8cyl"))

kernel density plot

densityplot(~mpg,
            main="Density Plot",
            xlab="Miles per Gallon")

kernel density plots by factor level

densityplot(~mpg|cyl.f,
            main="Density Plot by Number of Cylinders",
            xlab="Miles per Gallon")

kernel density plots by factor level (alternate layout)

densityplot(~mpg|cyl.f,
            main="Density Plot by Numer of Cylinders",
            xlab="Miles per Gallon",
            layout=c(1,3))

boxplots for each combination of two factors

Correction: The last line of code had an extra ( in the line layout=(c(1,3)).

bwplot(cyl.f~mpg|gear.f,
       ylab="Cylinders", xlab="Miles per Gallon",
       main="Mileage by Cylinders and Gears",
       layout=c(1,3))

scatterplots for each combination of two factors

xyplot(mpg~wt|cyl.f*gear.f,
       main="Scatterplots by Cylinders and Gears",
       ylab="Miles per Gallon", xlab="Car Weight")

NA

3d scatterplot by factor level

cloud(mpg~wt*qsec|cyl.f,
       main="3D Scatterplot by Cylinders")

dotplot for each combination of two factors

dotplot(cyl.f~mpg|gear.f,
       main="Dotplot Plot by Number of Gears and Cylinders",
       xlab="Miles Per Gallon")

scatterplot matrix

splom(mtcars[c(1,3,4,5,6)],
       main="MTCARS Data")

LS0tCnRpdGxlOiAiUXVpY2tSIC0gTGF0dGljZSBHcmFwaHMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KSSBoYXZlIGJlZW4gYXNrZWQgYWJvdXQgcHJvYmxlbXMgd2l0aCB0aGUgY29kZSBmcm9tIHRoZSBbTGF0dGljZSBHcmFwaHNdKGh0dHBzOi8vd3d3LnN0YXRtZXRob2RzLm5ldC9hZHZncmFwaHMvdHJlbGxpcy5odG1sKSBmcm9tIFtRdWljay1SXShodHRwczovL3d3dy5zdGF0bWV0aG9kcy5uZXQvaW5kZXguaHRtbCkKClN0YXJ0IGJ5IHJlbG9hZGluZyB0aGUgb3JpZ2luYWwgKm10Y2FycyogZGF0YXNldC4gIElmIHRoZSBtdGNhcnMgaXMgbm90IHJlbG9hZGVkIGFueSBwcmV2aW91cyBjaGFuZ2VzIHdpbGwgY2F1c2UgcHJvYmxlbXMgd2l0aCB0aGUgY29kZS4KCgpgYGB7cn0KZGF0YShtdGNhcnMpCmBgYAoKYGBge3J9CmxpYnJhcnkobGF0dGljZSkKYGBgCgojIGNyZWF0ZSBmYWN0b3JzIHdpdGggdmFsdWUgbGFiZWxzCgpgYGB7cn0KZ2Vhci5mPC1mYWN0b3IoZ2VhcixsZXZlbHM9YygzLDQsNSksCiAgICAgICAgICAgICAgIGxhYmVscz1jKCIzZ2VhcnMiLCI0Z2VhcnMiLCI1Z2VhcnMiKSkKY3lsLmYgPC1mYWN0b3IoY3lsLGxldmVscz1jKDQsNiw4KSwKICAgICAgICAgICAgICAgbGFiZWxzPWMoIjRjeWwiLCI2Y3lsIiwiOGN5bCIpKQpgYGAKCiMga2VybmVsIGRlbnNpdHkgcGxvdAoKYGBge3J9CgpkZW5zaXR5cGxvdCh+bXBnLAogICAgICAgICAgICBtYWluPSJEZW5zaXR5IFBsb3QiLAogICAgICAgICAgICB4bGFiPSJNaWxlcyBwZXIgR2FsbG9uIikKYGBgCgojIGtlcm5lbCBkZW5zaXR5IHBsb3RzIGJ5IGZhY3RvciBsZXZlbAoKYGBge3J9CmRlbnNpdHlwbG90KH5tcGd8Y3lsLmYsCiAgICAgICAgICAgIG1haW49IkRlbnNpdHkgUGxvdCBieSBOdW1iZXIgb2YgQ3lsaW5kZXJzIiwKICAgICAgICAgICAgeGxhYj0iTWlsZXMgcGVyIEdhbGxvbiIpCmBgYAoKIyBrZXJuZWwgZGVuc2l0eSBwbG90cyBieSBmYWN0b3IgbGV2ZWwgKGFsdGVybmF0ZSBsYXlvdXQpCgpgYGB7cn0KCmRlbnNpdHlwbG90KH5tcGd8Y3lsLmYsCiAgICAgICAgICAgIG1haW49IkRlbnNpdHkgUGxvdCBieSBOdW1lciBvZiBDeWxpbmRlcnMiLAogICAgICAgICAgICB4bGFiPSJNaWxlcyBwZXIgR2FsbG9uIiwKICAgICAgICAgICAgbGF5b3V0PWMoMSwzKSkKYGBgCgojIGJveHBsb3RzIGZvciBlYWNoIGNvbWJpbmF0aW9uIG9mIHR3byBmYWN0b3JzCgoqKkNvcnJlY3Rpb246KiogVGhlIGxhc3QgbGluZSBvZiBjb2RlIGhhZCBhbiBleHRyYSAoIGluIHRoZSBsaW5lIGxheW91dD0oYygxLDMpKS4KCmBgYHtyfQoKYndwbG90KGN5bC5mfm1wZ3xnZWFyLmYsCiAgICAgICB5bGFiPSJDeWxpbmRlcnMiLCB4bGFiPSJNaWxlcyBwZXIgR2FsbG9uIiwKICAgICAgIG1haW49Ik1pbGVhZ2UgYnkgQ3lsaW5kZXJzIGFuZCBHZWFycyIsCiAgICAgICBsYXlvdXQ9YygxLDMpKQpgYGAKCiMgc2NhdHRlcnBsb3RzIGZvciBlYWNoIGNvbWJpbmF0aW9uIG9mIHR3byBmYWN0b3JzCgpgYGB7cn0KeHlwbG90KG1wZ353dHxjeWwuZipnZWFyLmYsCiAgICAgICBtYWluPSJTY2F0dGVycGxvdHMgYnkgQ3lsaW5kZXJzIGFuZCBHZWFycyIsCiAgICAgICB5bGFiPSJNaWxlcyBwZXIgR2FsbG9uIiwgeGxhYj0iQ2FyIFdlaWdodCIpCiAgICAgICAKYGBgCgojIDNkIHNjYXR0ZXJwbG90IGJ5IGZhY3RvciBsZXZlbAoKYGBge3J9CmNsb3VkKG1wZ353dCpxc2VjfGN5bC5mLAogICAgICAgbWFpbj0iM0QgU2NhdHRlcnBsb3QgYnkgQ3lsaW5kZXJzIikKYGBgCgojIGRvdHBsb3QgZm9yIGVhY2ggY29tYmluYXRpb24gb2YgdHdvIGZhY3RvcnMKCmBgYHtyfQpkb3RwbG90KGN5bC5mfm1wZ3xnZWFyLmYsCiAgICAgICBtYWluPSJEb3RwbG90IFBsb3QgYnkgTnVtYmVyIG9mIEdlYXJzIGFuZCBDeWxpbmRlcnMiLAogICAgICAgeGxhYj0iTWlsZXMgUGVyIEdhbGxvbiIpCmBgYAoKIyBzY2F0dGVycGxvdCBtYXRyaXgKCmBgYHtyfQpzcGxvbShtdGNhcnNbYygxLDMsNCw1LDYpXSwKICAgICAgIG1haW49Ik1UQ0FSUyBEYXRhIikKYGBgCgoK